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Abstract

Stream ciphers are cryptographic primitives used to ensure privacy in digital commu-
nication. In this thesis we focus on stream ciphers built using Linear Feedback Shift
Registers (LFSRs). Several different stream ciphers are analysed and new attacks are
presented. In addition, two new stream ciphers are presented, both based on the same
design.

The first attack is performed on SOBER-t16 and SOBER-t32. A new distinguish-
ing attack is presented for simplified versions of the two ciphers, as well as for the
complete version of SOBER-t16.

Next, the cipher A5/1, used in the GSM standard for mobile telephones, is anal-
ysed. The resulting attack is an initial state recovery attack which recovers the secret
key using approximately 5 minutes of known keystream. The attack takes roughly 5
minutes to perform on today’s standard PC.

Bluetooth is a well-known standard for wireless communication and the cipher
responsible for the secrecy within that standard is called E0. An initial state recov-
ery algorithm on E0 is presented, based on recently discovered correlations within the
cipher. These new correlations are stronger than previously known. This attack, how-
ever, is only applicable to E0 in a theoretical perspective, since the required length of
the observed keystream is longer than allowed in the Bluetooth standard.

Following this, two distinguishing attacks are presented targeting clock controlled
generators; the shrinking generator and the self-shrinking generator. The attack on
the shrinking generator is based on a new observation that the majority bits of a block
surrounding the tap positions in the LFSR output also fulfils the linear recurrence
equation. The attack on the self-shrinking generator identifies two new classes of weak
feedback polynomials. For the first class, both a distinguishing attack and an initial
state recovery attack are presented. This distinguishing attack is remarkable in the sense
that the required length of the observed keystream only grows linearly in the length of
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Abstract

the shift register. For the second class of weak feedback polynomials a distinguishing
attack is given.

The final part of this thesis concerns the design of stream ciphers. Two new designs
are presented, SNOW 1.0 and SNOW 2.0, the latter being an improvement on the
former. These ciphers are designed to be very fast, especially in a software implemen-
tation.
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1
Introduction

To many people, cryptography is a strange, secret code used only by the military and
secret agencies. Movies and books about spies during the cold war have painted

a picture of cryptography being a science used only by people who shun the daylight.
This view is strengthened by the fact that many people normally do not know or care
about the inherent mechanism of their daily-used technical gadgets. Today, cryptology
is an integral part of our lives whether we know it or not. The list of public applications
is long, and many spring from the use of the internet. This global communication
system has provided us not only with new buzz words such as "24/7 shopping", "one-
click-buy" and "JIT-services" but also with new and very convenient ways of performing
tasks.

If you use the internet to do bank transfers you use cryptography methods to both
identify yourself to the bank, and let the bank identify itself to you, as well as keep
your transactions private from other users of the internet. You most certainly want
your bank transfers to be your own private business. This year, for the first time in
Sweden, there was the possibility of doing the tax income declaration over the internet,
and the security needs here are much the same as those for bank transfers. The old
fashioned process of signing a paper can today be replaced by a digital signature. But
the underlying idea that a signature (by hand or digital means) is difficult to disprove,
is still the core of the procedure. Also the opposite applies, that forging a signature
should be a problematic task, a property ensured by the digital signature. It is actually
less likely that you will have your signature forged if you are using a well-constructed
digital scheme, than if you sign a paper by hand.

Another commonly known area where cryptology is used by the broad public is
in cellular phones. In the Global System for Mobile communications (GSM)1, the

1GSM originally stood for Groupe Speciale Mobile, the name of the committee that began the standard-
isation procedure.
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1. Introduction

mobile phone system used in Europe, there is a built in cipher called A5/1 to ensure
your conversation is private. However, as will be shown in this thesis, the GSM cipher
is not particularly secure.

These are just a few examples of cryptology used in common public applications.
Of course, military and government agencies still use strong cryptography to commu-
nicate, and with the exception of the last 30 years or so, the military needs for secrecy
have been the primary force behind the developments in the area. Informal discus-
sions with representatives of both the Swedish military intelligence service and foreign
counterparts have indicated that the military have had an advantage in the design and
analysis of both block and stream ciphers, but that this advantage has been gradually
decreasing over the last 20-30 years. My impression is that public research has in many
ways contributed to the military knowledge in the recent years.

There are two good books covering the development of cryptology up to its mod-
ern status, presented in a easy-to-read non-technical fashion. The first is The Code-
breakers by Kahn [68], and the second is The Code Book by Singh [115]. Other
books, also intended for the general public, covering more specific events in the his-
tory of cryptology and especially the breaking of the German navy cipher Enigma, are
[108, 55, 60].

The rest of this chapter is devoted to a general introduction to the topic, which
starts in Section 1.1 with a presentation of cryptology. In Section 1.2, symmetric-key
ciphers are introduced. Some basic definitions for cryptanalysis and different types of
attack are discussed in Section 1.3 and Section 1.4. Finally, the outline of the thesis is
given in Section 1.5.

The non-technical reader is invited to read Chapters 1 and 2 for a general intro-
duction to the topic of cryptology, and possibly also the introduction to Chapter 4 for
an overview of the security management in the GSM mobile phone system.

1.1 Cryptology

Cryptology is the uniting name for a broad scientific field in which one studies the
mathematical techniques of designing, analysing and attacking information security
services. Cryptology consists of two subfields; cryptography and cryptanalysis. Cryptog-
raphy is the field in which one studies techniques for providing security services and
cryptanalysis is the field in which one studies techniques for defeating (attacking) the
security services. We will adopt the viewpoint taken in [85] and distinguish four goals
for cryptography services;

� Confidentiality. The goal is to ensure that the information is only available to
authorised users. Synonymous terms are privacy and secrecy. One example of
secrecy is message encryption.
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1.1 Cryptology

� Data integrity. The goal is to ensure that only authorised users can alter the
information without it being noticed. One familiar example is to write a letter
and seal the envelope with sealing wax. Even though this example does not
cover all aspects of digital data integrity, it gives an idea of the concepts.

� Authentication. The goal is to identify data origin or destination. Both parties in
a communication sometimes need to ensure that the other is a legitimate user.
This can also be applied to the data itself, as to ensure a specific date and time
that the message was sent. A classic example from the movies is when two spies
meet for the first time and exchange some predetermined phrases to establish
identities; "We last met in Prague, I believe" - "No, I think it was in Berlin, in
1944". This is called a challenge/response. One party challenges the other, and
if the other party knows the correct answer, the authentication is successful.
For authentication using computers, the scheme is more complex than solely
exchanging phrases, and the challenge is normally a computational challenge. If
the responding party can correctly calculate an answer to the challenge based on
the secret information, the authentication is successful.

� Non-repudiation. The goal is to ensure that someone cannot deny a previous
commitment or action. As an example we can take a web shop, where customers
can order products. The shop does not want the customers to be able to later
deny an order or product, neither would the customers want the shop to be
able to forge an order from the customer. The infrastructure needed for this
information security service is expensive and generally involves a trusted third
party. This is probably the reason why non-repudiation for web shops and
customers is not widely implemented.

These issues are addressed in cryptography using different cryptographical prim-
itives. A primitive is a fundamental tool or algorithm designed to solve a specific
information security problem. To achieve the goals listed above, one usually needs to
apply several different primitives, and employ them using specific protocols to ensure a
secure system overall. In this context, a protocol is a set of rules for communicating. A
protocol determines both the order of the messages, possible messages to send/receive,
and how to interpret the contents of the messages. For example a poker game is strictly
governed by a protocol where the dealer deals the cards clock-wise, then the bets start
with the person sitting after the dealer. Typical messages to be communicated in a
poker game are "check", "raise", "call", or "fold". Using these words and not altering
them as in "I wanna check out your cards with some more dough in there, dude", instead
of the correct phrase "I raise", makes the game unambiguous, commits the player to
his or her actions, and prevents cheating.

The classic information security goal, to provide secrecy, is obtained by using a
primitive called a cipher. Some examples of other primitives are signing primitives
which should provide the same functionality as a handwritten signature, or Message
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1. Introduction

Authentication Codes (MACs) which provide means to ensure that a message has not
been altered on the route to the receiver.

The cryptographical primitives can be divided into three categories; unkeyed prim-
itives, symmetric-key primitives, and asymmetric-key primitives, where the latter are also
known as public-key primitives.

The unkeyed primitives include, for example, hash functions which are also used in
databases and search algorithms. These unkeyed primitives are mainly used as building
blocks in the keyed primitives. In this category, there are also theoretical tools such as
random sequences. Random sequences are seldom used per se, mainly because they are
quite cumbersome to obtain. Various suggestions on how to achieve true randomness
have been proposed over the years and include thermal noise generated by a resistor,
background radiation from space and lava light behaviour [62]. All these suggestions
are either very expensive or impractical to implement. Less expensive solutions have
problems, for example, if you use the timing of a user’s keyboard typing or the random
movement of the mouse as a source of randomness, there might not be keyboard
strokes available at the moment you need random data. If you have a web server, it
is more likely that it is tucked away in a computer room with no keyboard or mouse
connected to it at all. Apart from availability, there is also a problem of estimating the
randomness of the source. How much randomness is there in keyboard timing, given,
for example, a microphone recording the strokes?

More important is the theoretical use of random sequences as a mathematical de-
scription of something that is almost random, pseudo-random. We also use true ran-
domness as a theoretical tool in evaluating the strength of other cryptographical prim-
itives by comparison.

In the presentation of the keyed primitives, i.e. the symmetric-key and asymmet-
ric-key primitives, the focus will be on the cipher primitive, as the topic of this thesis
is stream ciphers.

The historical way of encrypting is to use a symmetric-key primitive. The word
"symmetric" refers to the fact that the same key is used for both encryption and de-
cryption. A more general definition of symmetric-key encryption is that it should be
computationally easy to derive the decryption key from the encryption key and vice
versa. Thus the two keys need not be exactly identical, but in most symmetric schemes
they are. This implies that the sender and receiver must share the key, and that key
must be transferred by some secure means, e.g. a courier, or the two parties commu-
nicating must know in advance that they will engage in a private conversation and set
up a prior key exchange. Figure 1.1 shows two people, Alice and Bob, communicating
using a symmetric cipher, where the adversary Eve, who is trying to listen in on the
conversation, is eavesdropping on the insecure communication channel. The names
of the parties: Alice, Bob, and Eve are standard designations within the cryptographic
literature.

A classical example of a symmetric-key cipher is the Vigenère cipher. In this system
both the message m = m0m1 . . .mN and the ciphertext c = c0c1 . . . cN are strings

4



1.1 Cryptology

Alice

Encryption Decryption

Adversary

Secure channel

Unsecured channel

Message
Secret key Decrypted message

Bob

Eve

Figure 1.1: Two parties engaged in a symmetric cipher conversation with an
adversary listening in on the unsecured channel.

of letters from the English alphabet {A,B, . . . , Z} of arbitrary but finite lengthN+1.
The key K = k0k1 . . . kl−1 is also a string of letters from the English alphabet of
length l. The message and the key are transformed to a sequence of integers by the
transformation A ↔ 0, B ↔ 1, . . . , Z ↔ 25. These sequences are denoted m′ and
K′ for the message and the key respectively. The sequence of integers for the ciphertext
is then computed as

c′i = m′
i + k′i mod l mod 26, i = 0, 1, 2, . . . , N. (1.1)

The integer sequence c′ is then transformed back to ordinary English letters by the
same transformation as used previously.

Example 1.1: Vigenère cipher
Let the message be m ="TRUMPETPLAYER" and let the key be K ="PATRIK".
The transformation of the message and the key to integer sequences yields m′ =
19, 17, 20, 12, 15, 4, 19, 15, 11, 0, 24, 4, 17 and K ′ = 15, 0, 19, 17, 8, 10. Applying
the encryption rule (1.1) we get

19 17 20 12 15 4 19 15 11 0 24 4 17
+ 15 0 19 17 8 10 15 0 19 17 8 10 15

8 17 13 3 23 14 8 15 4 17 6 14 6

where the addition is modulo 26, i.e. each sum that is larger or equal to 26 is subtracted
by 26 to make the result in the range 0 . . . 25. Transforming the ciphertext back to
English letters gives us a ciphertext c ="IRNDXOIPERGOG". �

5



1. Introduction

The prerequisites for encryption were radically changed in 1976 when a celebrated
paper by Diffie and Hellman [27] formed the basis of a new class of cryptographical
primitives where the key need not be symmetric. Two years later, Rivest, Shamir
and Adleman [97] presented their famous encryption scheme (the RSA encryption
algorithm) based on the new principles; one key is used for encryption and another
key is used for decryption. The important point here is that the decryption key should
not be computable from the encryption key. This class of encryption schemes is called
asymmetric-key primitives or public-key primitives. Public-key refers to the fact that
the encryption key used for sending a message to a person A is public. Anyone can
encrypt a message for A , but only A has the private key needed to decrypt the message.
The crucial point here is that the encryption is not easily reversed. Even though the
attacker knows how to encrypt, she cannot do the decryption. It can be imagined as if
B wants to send A a private message, A first sends B an unlocked padlock. B puts the
message in a box and locks the box with the padlock and sends it back to A . If the box
with the message is intercepted on the way back to A it is still safe since nobody except
A has the key which unlocks the padlock. Even if the attacker knows how to lock the
padlock (encrypt), she cannot unlock it easily (decrypt). In technical terms it is said
that the encryption process is hard to invert and in order to perform the inversion, you
need to use a trap-door. The trap-door is the secret which makes it possible to decrypt.
Figure 1.2 shows Bob sending Alice a private message using a public-key cipher.

Alice

Encryption Decryption

Adversary

Unsecured channel

Unsecured channel

Message
Decrypted message

Bob

Eve

Public key

Private key

Figure 1.2: Two parties engaged in a public-key cipher conversation. The
adversary can see both the ciphertext and the public key.

The public-key encryption schemes give more user freedom compared to the sym-
metric-key primitives. Basically anyone can send an encrypted message to you if you
publish your public key on the web. But the asymmetric schemes also require more
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1.2 Symmetric-key ciphers

cryptographical infrastructure, usually called the Public Key Infrastructure (PKI). In
general we need a trusted third party to validate the public keys before use, such that
the origin of the public key is authenticated. The public-key primitives are also much
slower than the symmetric primitives and do not qualify for encryption of large bulks,
e.g. hard disk encryption or high speed network encryption. Sometimes a combination
of public-key and symmetric primitives is the solution. Two parties that do not have a
prior agreement about a symmetric key can use public-key primitives to set up a secret
symmetric key and then change to a symmetric bulk encryption primitive.

Interesting as the public-key primitives are, we must confine ourselves to the topic
of this thesis and take an in-depth look at the symmetric-key ciphers only.

1.2 Symmetric-key ciphers

Let us first make a more precise definition of what we mean with a symmetric-key
cipher. We will assume that the encryption and decryption keys are identical, which is
the most common scenario. Firstly, some terminology will be introduced.

Definition 1.2: An alphabet is a set of symbols.

For example, an alphabet could be the set of binary digits {0, 1}, or the set of English
letters {A,B, . . . , Z}. Let

� M be the message space or the plaintext space. M consists of finite, nonempty
strings of symbols from a suitable alphabet. An element of M is called a plain-
text message or simply a message.

� C be the ciphertext space. Similarly, C consists of finite, nonempty strings of
symbols from a suitable alphabet, not necessarily the same alphabet as for M.
An element of C is called a ciphertext.

� K be the key space. An element of K is called a key. K is the set of possible
(valid) keys.

Additionally we denote by Ek, k ∈ K, a set of bijective transformations from M
to C. For fixed k, Ek is called the encryption function or encryption transformation.
Finally we denote by Dk a set of bijective transformations from C to M. For fixed
k, Dk is called the decryption function or the decryption transformation. The bijectivity
implies that the cardinality of M and C must be equal. One could indeed consider
an injective encryption function, but the decryption transformation would then first
need to determine if the given ciphertext is valid. Thus we adopt these somewhat less
cumbersome definitions.

Since we are only discussing symmetric-key ciphers we will drop "symmetric-key"
and refer to them as "ciphers" throughout this thesis.

7



1. Introduction

Definition 1.3: A cipher is a set of encryption and decryption transformations {Ek :
k ∈ K} and {Dk : k ∈ K} respectively. Additionally we require that m =
Dk(Ek(m)) for all m ∈ M and k ∈ K, i.e. for every valid key and every mes-
sage, the decryption of an encrypted message gives the original message back.

Note that the definitions above do not allow for infinitely long strings to be en-
crypted. That does not, however, imply any restrictions on the encryption, since each
message must be finite in order to have an interpretation. Infinitely long strings cannot
have an interpretation and thus there is no need to encrypt them.

If there is a very long message to be communicated, the delay would be too large if
the encryption of the first letter of a message depended on the last letter of the message.
Also during decryption, it is undesirable to have to wait for the entire (long) ciphertext
to arrive through the channel before any decrypted plaintext can be produced. The
solution is, of course, to divide the plaintext into smaller entities or blocks, where
the processing of each block is only dependent on the current block being processed
and possibly also on the previously processed blocks. To achieve this, there are two
standard approaches for the design of the cipher, a block cipher or a stream cipher. To
make the discussion more precise we assume that the messages are binary strings. This
does not imply any restrictions on the types of messages that can be encrypted, since
all kinds of information can be encoded into a binary string representation.

Block ciphers

A block cipher is a device that takes as input an Lkey bit key and an n bit plaintext
string and produces an n bit ciphertext string as output. The parameter n is called the
block size. From the discussion prior to, and contained in Definition 1.3 we note that

n bit block of plaintext

Block 
cipher

n bit block of ciphertext

Key

Figure 1.3: General structure of a block cipher.

a block cipher must define a permutation on the set of n bit binary strings. Thus, if
the key is fixed and we encrypt all possible n bit messages, then we will get all possible
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1.2 Symmetric-key ciphers

n bit strings as output. The Vigenère cipher defined in (1.1) is a block cipher with a
block size equal to the key length.

Block ciphers are one of the most versatile cryptographical primitives. Apart from
their use as ciphers for encryption, they serve as building blocks in numerous other
primitives, for example authentication techniques and data integrity primitives.

Famous block ciphers include the DES,(Data Encryption Standard) [85] and the
newly nominated standard AES (Advanced Encryption Standard) [25]. The DES was
developed in the 1970’s mainly by IBM, and has a 64 bit block size and a 56 bit
key. Much effort has been put into finding weaknesses in DES but it has resisted
surprisingly well over these last 30 years. One of the reasons for developing the new
standard was that the key size of 56 bits is too small for the computing power of
today’s computers. A dedicated highly parallel machine could find the correct key by
exhaustively trying all possible keys in a time frame of less than 6 hours. The cost of
such a machine is rapidly decreasing and in 1997 would cost about US$100,000 to
build. If we build a more advanced machine for about US$1,000,000, the time frame
for breaking DES is estimated to be 35 minutes [121]. This is of course unacceptable
for a cipher used in bank transfers and other highly secret environments. The solution
taken has been to encrypt several times using a setup called triple-DES. This increases
the key size but also reduces the encryption speed radically. The aim of the new
standard AES was to deliver a new cipher with larger key size (128 and 256 bits),
larger block size (128 bits) and with a much faster encryption/decryption time both in
hardware and software.

One problem of a direct application of a block cipher as an encryption primitive
is that patterns in the plaintext are visible for a fixed key. If two plaintext blocks are
identical, the block cipher will encrypt them to identical ciphertexts. This reveals
some information about the plaintext and is normally considered as a weakness for
an encryption system. Therefore, a block cipher is almost never used in this so-called
Electronic Code Book (ECB) mode of operation. There are other modes of operations
that for example chain the output of one block encryption to the next. The ciphertext
block of the first encryption is bitwise added to the plaintext block of the second
before encryption. Then the second ciphertext block is added to the third plaintext
block before encryption, et cetera. This solves the problem of patterns but introduces
the severe problem of error propagation. If the ciphertext is distorted by noise during
transmission, all subsequent plaintexts will be distorted during decryption due to this
chaining. Other modes of operation are discussed in [85].

Stream ciphers

A stream cipher operates on individual characters in the underlying alphabet, with
a time-varying function. Since the encryption is time-varying, we do not have the
problem of patterns in the plaintext being encrypted to identical patterns in the ci-
phertext. We also have limited error propagation since each character of the plaintext
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1. Introduction

is encrypted individually. Compared to block ciphers, stream ciphers are also eas-
ier, smaller and cheaper to build in hardware. These properties make stream ciphers a
suitable cryptographical solution in telecommunication systems or high speed network
devices for attaining secrecy.

A thorough description of stream ciphers will be given in Chapter 2. Instead, we
will now focus on the important area of cryptanalysis.

1.3 Cryptanalysis

As stated previously, cryptanalysis is the study of techniques for breaking a crypto-
graphical primitive. When evaluating the strength of a cipher, we generally compare
it to the generic attack of exhaustively searching over all possible keys to find the right
one. This attack is called exhaustive key search. No practical cipher will be more se-
cure than the time it takes to test all keys, so in a sense, this is the highest achievable
strength of a cipher. There is however, one famous exception to this, the ultimately
secure cipher; the one-time pad (OTP).

The OTP is the Vigenère cipher with a key length equal to the length of the
message. Using binary strings we define it as follows. Let the message bits be denoted
m = m1m2 . . .ml and the key bits as K = k1k2 . . . kl. The ciphertext is computed
by the exclusive or (xor2) of the message bits with the key bits

ct = mt ⊕ kt, t = 1 . . . l.

The important condition for the security of the OTP is that the key bits must be
completely random and used only once.

Shannon [111] showed in his fundamental paper in 1949 that this encryption
system is unconditionally secure. This property means that no matter how big or fast a
computer the attacker has, she can never find out which plaintext was sent.

The unconditional security of the OTP comes from the fact that each plaintext is
equally likely. Since the key bits are chosen randomly and independently of each other,
each key is equally likely. If a key bit is 1, it means that we "flip" the corresponding
message bit when computing the ciphertext. Thus, for each given ciphertext and each
possible plaintext, we can find a key that decrypts the ciphertext into that particular
plaintext, making each plaintext equally likely3.

The obvious drawback of the OTP is that the key must be as long as the message
that is to be encrypted4. This is in fact a necessary condition for any cipher claiming
unconditional security. Since the key should be secret, one could argue that if we want
to send an encrypted message, we first have to send a key that is as long as the message

2The xor operation is defined as 0 ⊕ 0 = 0, 1 ⊕ 0 = 1, 0 ⊕ 1 = 1 and 1 ⊕ 1 = 0.
3If the possible messages have a priori probabilities, the plaintexts (conditioned on the observed cipher-

text) will not be equally likely after encryption, but sustain their a priori probabilities.
4To put it more precisely, the entropy of the key must be larger or equal to the entropy of the message.

10



1.4 Methods of attack

through a secure channel. So, then we could have sent the message through the secure
channel in the first place, instead of the key. The OTP is of course unpractical in
such a setting, but could become useful if a secure channel is available during a small,
limited time.

This describes the property of unconditional security. For practical ciphers the
situation is not as clear as for the OTP. Often we talk about computationally secure
ciphers instead. This means that, given the possibilities of today’s computers and
the predicted increase in performance of tomorrow’s computers, the adversary cannot
defeat the system. We also define the computational security of a cipher to be the
computational effort required, by the best currently known attacks, to break the cipher.

Another way of describing the security of a cipher is to try to prove that breaking
the cipher is equivalent to solving a difficult mathematical problem, like factoring inte-
gers or solving the discrete log problem. This way of arguing is called provable security,
which is somewhat misleading since there is never a proof of the complexity of the
underlying problem. The notion is that these problems have been studied by mathe-
maticians for centuries and are probably very difficult to solve. Nevertheless, there is
no guarantee that someone will not find a fast algorithm to factorise the integers, and
then, for example, the RSA-type of public-key primitives are irreparably broken.

We see that apart from the unconditionally secure ciphers, there is really no proof
of security anywhere. The best we can do is to evaluate the known attacks for a certain
construction but we can never foresee future attacks and ideas for cryptanalysis. That
is why cryptography is so unlike most other engineering areas. Usually the engineer
can predict the worst case scenarios when constructing a building or an aeroplane and
design accordingly. In cryptography the attacker is an adaptive, intelligent human
being, who can learn from new scientific results and apply them to an older cipher.
If that cipher is, for example, a world-wide standard in the financial market, then the
worst case scenario may be a financial collapse.

1.4 Methods of attack

The first and most important rule for the designer of a cryptographic primitive is called
Kerckhoff ’s Principal:5

The security of the encryption scheme must depend only on the secrecy
of the key, and not on the secrecy of the algorithms.

Thus, the security of the design shall not rely on secret components of the prim-
itive, since it is likely that the design will be leaked to an attacker. For example, the
design of Enigma, one of the German ciphers used during World War II, was leaked
when the allied forces captured German troops and naval ships. A more modern ex-
ample is the cipher A5/1 in the GSM cell phone system. The design was initially

5He actually wrote five of them, but it is only the second which has become famous.
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kept secret by the telecom industry but in 1999 the algorithm was reverse engineered
by Briceno et al. [12]. The alleged structure of the cipher was later confirmed by the
telecom companies. According to an invited talk by Babbage given at Selected Areas
in Cryptography (SAC) in 2002, one of the main reasons for the decision to keep the
algorithm secret was that the export regulations, at that time, prohibited the devel-
opment of a full strength algorithm. In the new standard for the third generation
mobile phones, the team of experts has published the proposed algorithms for public
review [37].

Recalling the adversary Eve from Figure 1.1 on page 5, we will define some of the
attacks that she might mount. From the figure, it may seem as though she can only
listen in on the encrypted communication and not actively engage in the conversation,
but in general we must allow her to be very active on the channel. She can: listen to,
record, alter, resend, insert, or delete messages on the channel. From Kerckhoff ’s
Principal we also assume that she knows everything concerning the cryptographical
system and the protocols used between Alice and Bob. We now classify the methods
of attack according to the amount of information the adversary Eve has obtained and
the goal of the attack.

� Ciphertext-only attack.
This is what most people think of when we talk about breaking a cipher. All the
adversary sees is the ciphertext communicated between Alice and Bob. Trying
to decrypt a message given only the ciphertext is the most difficult attack since
the attacker has the least amount of information.

� Known plaintext attack.
In this scenario the adversary knows both the plaintext and the corresponding
ciphertext. It might seem slightly improbable that both the plaintext and the
ciphertext are revealed, but there are many situations where this could happen.
Many messages have predictable beginnings and endings, for example email
messages. Maybe Alice is out of the office and has an auto-reply function on her
email. When Eve sends her an email, she gets the auto-reply in plaintext. Later,
when Bob sends Alice an email, the auto-replier sends the same message to him,
but now encrypted. Alice could also send the same message encrypted to many
recipients including Eve, who now has the plaintext and ciphertexts of the other
recipients.

� Chosen plaintext attack.
Here the adversary has access to an oracle, which can encrypt any given plaintext
under the correct key. This is an even more powerful type of attack than the
known plaintext attack, since the attacker can now choose plaintexts that are
especially favourable for breaking the cipher. Sometimes we distinguish between
an online and an offline attack. In the offline attack all plaintexts that should be
encrypted are prepared in advance and handed to the oracle for encryption.
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In the online attack the adversary can choose the next plaintext based on the
previously received ciphertext from the oracle. This kind of attack is not as
unrealistic as it would first seem. We could imagine an insider at a company
who sneaks in during the lunch break and uses Alice’s unlocked computer. The
insider feeds the prepared plaintext to Alice’s computer which acts as the oracle.

� Chosen ciphertext attack.
This is similar to the chosen plaintext attack, but now the adversary has access to
two oracles instead, one that encrypts any given plaintext and one that decrypts
any given ciphertext except the ones the attack is trying to break. This attack
is naturally more powerful than all the previous attacks, since the adversary has
more freedom.

The primary goal of the attacks described above is to recover the plaintexts of a set
of given ciphertexts or to recover the secret key. Another type of attack which is not
as powerful, is the distinguishing attack. In this attack the adversary tries to detect a
difference between the actual cipher and the ideal cipher. In the next chapter we will
introduce the additive stream ciphers, and argue that the OTP is the ideal cipher for
this class.

A distinguishing attack on an additive stream cipher can be used to verify or falsify
that a specific message was encrypted. This is very relevant if the number of possible
messages is limited and the attacker has the power to test them all. The attacker cannot
use the retrieved information in the future to decrypt other messages, only to decide if
a guessed plaintext is correct.

Grasping the numbers

In cryptology, extremely large numbers are very commonly used when stating results
such as, for example, the required number of observed bits for an attack. Likewise,
extremely small numbers are used when computing probabilities of, for example, cor-
rectly guessed bits in the cipher. Sometimes it can be hard to grasp the magnitude
of these values and put them in a physical context. To aid the reader, different phys-
ical quantities and measures are presented in Table 1.1. Most values are taken from
similar tables found in Applied Cryptology by Schneier [107], and Information Theory,
Inference, and Learning Algorithms by MacKay [76].
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Base 2 Base 10 Physical quantity

28192 102466 Number of distinct 1-kilobyte files.

21000 10301 Number of binary strings of length 1000.

2266 1080 Number of electrons in the universe.

2190 1057 Number of electrons in the solar system.

2171 1051.5 Number of electrons in the earth.

258 1017.5 Age of the universe in seconds.

236.5 1011 Number of neurons in the human brain.

236.5 1011 Number of bits stored on a DVD.

232.5 109.8 Number of bits in the human genome.

232.6 109.8 Population of earth.

223.3 107 Number of bits in the E. Coli genome, or in a floppy disk.

220 106 1,048,576.

210 103 1,024.

20 100 1.

2−22.7 10−6.8 Probability of winning the top prize in the Swedish Lotto
lottery.

2−25 10−7.5 Probability of error in transmission of coding DNA, per
nucleotide, per generation.

2−33 10−9.9 Probability of being killed by lightning, per day (U.S.
statistics).

2−60 10−18 Probability of an undetected error in a hard disk drive,
after error correction.

Table 1.1: Large and small numbers. Conversion between base 2 and base
10 is approximate.

1.5 Thesis outline

This thesis consists of three main parts, all concerning stream ciphers built using linear
feedback shift registers. The first part, including Chapter 1 and Chapter 2 is a general
introduction to cryptology and in particular stream ciphers. Chapters 4 through 7 are
concerned with cryptanalysis of LFSR based stream ciphers. The final part, Chapter 8,
presents a new design, the SNOW family of stream ciphers. Next, some more details
of the following chapters are given.

In Chapter 2 we more formally introduce the main topic of the work; the stream
ciphers and their components. Since all of the considered ciphers are based on Linear

14
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Feedback Shift Registers (LFSRs) we discuss some of their properties and the advantages
and disadvantages of using them in a design. An LFSR is a device use to produce
a sequence of symbols, with good statistical properties. However, this sequence is
very easy to predict given a certain amount of generated symbols. This is due to the
linear property of the device. Therefore, in order to use LFSRs in a cryptographical
primitive, and particularly in a stream cipher, the linearity must be destroyed. Thus,
Boolean functions and S-Boxes are introduced together with their basic properties.
Also in this chapter, some classical stream cipher designs are presented, followed by an
introduction to the most common attacks on stream ciphers.

In Chapter 3, two different distinguishing attacks are presented, targeting the
stream ciphers SOBER-t16 and SOBER-t32. The SOBER-16 cipher is an additive
stream cipher with a symbol size of 16 bits. The final step before generating the out-
put keystream is a so called stuttering unit, which irregularly decimates the output
sequence. Firstly, a simplified version of SOBER-t16 where this stuttering unit is re-
moved, is attacked. The approach taken is to linearise the nonlinear filter and measure
the correlation between the output using that assumption and the true output from
the nonlinear filter. The correlation is measured for the 16 bit input and output words
of the nonlinear filter. Then, the stuttering unit is reinserted, and the attack is applied
again, but now with the additional complexity of guessing where in the decimated out-
put the needed observations are visible. For SOBER-t32, a different attack based on
a bitwise correlation through the nonlinear filter is analysed. This attack also targets
the simplified version of SOBER-t32, where the stuttering unit is removed. Finally in
this chapter, we give some related work by other authors, extending these results to the
case where the stuttering unit in SOBER-t32 is present.

Chapter 4 begins with a brief overview of the security management in the GSM
cell phone system. This serves as an introduction to the attack on the stream cipher
A5/1, used for privacy in GSM. The attack is based on a very weak key initialisation,
where the two components, the secret key and the public frame number, are initialised
in a linear fashion. This allows for a separation of the LFSR output from these two
contributions. During initialisation, the cipher is irregularly clocked 100 times be-
fore producing keystream material. By weighting the probabilities of the number of
clockings actually performed, the attack can estimate the secret key part based on the
keystream output with high probability.

In Chapter 5, another nowadays widely used cipher is analysed, the E0 stream
cipher. This cipher is defined in the Bluetooth standard for short-range wireless com-
munication. The cipher consists of four LFSRs, the outputs of which are xored to-
gether with the output of a finite state machine. A new stronger correlation in the
output sequence from the finite state machine is presented and using that, an initial
state recovery attack is mounted. The attack requires a much longer received keystream
sequence than allowed in the Bluetooth standard, so the attack is merely a theoretical
attack on E0 and not on its usage in Bluetooth. These results were first presented in
2000 and several better attacks have been presented by other authors and are briefly
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discussed.
A distinguishing attack on the shrinking generator is presented in Chapter 6. The

shrinking generator is a clock controlled stream cipher built from two linear feedback
shift registers and an additional selection logic to irregularly decimate the output key-
stream. The main idea for the attack is that the majority bit of the blocks, centred
around the tap positions in the feedback polynomial, fulfil the linear recursion more
often than random. The attack attempts to estimate those majority bits and from that
distinguish the keystream output from a random sequence. A theoretical analysis of
the expected complexity and required number of observed keystream bits is also given
and compared to recent work by other authors.

In Chapter 7, another clock controlled stream cipher, the self-shrinking generator,
is analysed. Two classes of weak feedback polynomials are given. For the first class
we present both a distinguishing attack and a initial state recovery attack. The dis-
tinguishing attack is very efficient and the required length of the observed keystream
only grows linearly in the length of the shift register. For the second class of weak
feedback polynomials, which is a much more general class, a distinguishing attack is
presented. The exact complexity of this approach is still an open problem, but we
show the validity and efficiency of the attack using simulation results.

The design part of this thesis is presented in Chapter 8. Two new stream ciphers
SNOW 1.0 and SNOW 2.0 are introduced. Both versions are built from a single linear
feedback shift register and for each clocking of the ciphers, 32 pseudo-random bits are
produced. This makes the SNOW family very fast in especially software implementa-
tions. Encryption speeds of up to 4.5 CPU clock cycles per byte have been achieved.
SNOW 1.0 was a candidate for the NESSIE project, but was removed during the final
phase due to two different attacks. Both these attacks are discussed and the next ver-
sion, SNOW 2.0, is presented, in which several of the weaknesses in SNOW 1.0 have
been improved. A very recent approach for attacking SNOW 2.0 is also discussed.

Finally, in Chapter 9, some concluding remarks are given and some possible further
work in this area is discussed.
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Introduction to stream

ciphers

In this chapter we will introduce a class of primitives called stream ciphers. The main
properties of stream ciphers separating them from (pure) block ciphers are that the

encryption function works on individual symbols (letters) of the underlying alphabet
and that the encryption function is time-varying. Block ciphers tend to have large
block sizes: 64, 128, or 256 bits, whereas the symbol size used in a stream cipher is
smaller, typically 1, 8, 16 or 32 bits. This symbol size (if larger than 1 bit) is often
equal to the word size of the CPU, to take maximum advantage of the data bus size.
Many dedicated hardware stream ciphers have a symbol size of 1, for example the
stream cipher E0 used in Bluetooth [10].

Many of the properties of stream ciphers make them suitable for use in telecom-
munication and low-level network encryption. They are normally much faster than
block ciphers and do not cost more to implement in terms of hardware gates or mem-
ory, nor software memory. They also have limited error propagation if the encrypted
data is corrupted on the channel, and limited buffer requirements since the symbol
size is relatively small and each symbol is encrypted independently of the others.

This chapter begins with a general introduction and presentation of stream ci-
phers. Section 2.2 gives some basic definitions and properties of Linear Feedback
Shift Registers (LFSRs), a component widely used inside stream ciphers. The next
sections, Sections 2.3 and 2.4, are an introduction to Boolean functions and vector
Boolean functions (S-Boxes). Section 2.5 discusses some classical stream cipher design
principles and Section 2.6 introduces some well known approaches to cryptanalysis
on stream ciphers. In Section 2.7, a general discussion of what it means for a stream
cipher to be secure is given. Finally, in Section 2.8, a summary of the chapter is given.
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2.1 Stream ciphers

Stream ciphers are divided into synchronous and self-synchronous. We first take a look
at the encryption process for a synchronous stream cipher. It can be described at time
t ≥ 0 by the equations

σt+1 = f(σt, k),
zt = g(σt, k),
ct = h(zt,mt),

where σ0 is the initial state and may depend on the key k. f is the next-state function,
g is the function which produces the keystream zt, t ≥ 0 and h is the output function
which combines the keystream and the plaintext to produce the ciphertext ct, t ≥ 0.
The procedure for encryption is pictured in Figure 2.1. Basically it works as a finite

Plaintext

Ciphertext

f

gσt h

mt

ct

zt

k

Figure 2.1: General structure of a synchronous stream cipher.

state machine, where the current state σt together with the key produces the output
keystream. Then the next state is determined from the key and the current state using
the next-state function. We can formally state the following definition.

Definition 2.1: A synchronous stream cipher is a finite state machine for which the
keystream is generated from the key, but independently of the plaintext message and
the ciphertext.

So, at each time instance t ≥ 0, the cipher produces a new keystream symbol zt ∈ Z ,
where Z typically is the binary field F2 or some extension F2W of the binary field.
The symbol size for the stream cipher is then defined to be W bits. The message m is
split into symbols of size W bits m = m0,m1,m2, . . . ,mN−1, where mt ∈ M and
encrypted symbol by symbol using the output function h. The output is a sequence of
ciphertext symbols c = c0, c1, c2, . . . , cN−1, where ct ∈ C. Here, M and C are the
plaintext alphabet and ciphertext alphabet respectively.
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It is very common to use the xor function as the output function h. Since xor is
the field addition operation, we normally denote such a cipher, having Z = F2W for
some W ≥ 1 and xor as the output function, an additive stream cipher. Note that for
an additive stream cipher to work, we require that both the plaintext alphabet M, and
the ciphertext alphabet C, are equal to Z , M = C = Z , otherwise the field addition
operation is not valid.

We can also describe the additive stream cipher as a pseudo-random number gener-
ator or a keystream generator whose output is xored to the plaintext. The key is used to
initialise or seed the generator, which starts to produce pseudo-random bits. We note
the similarity to the One-Time-Pad; instead of having the complete keystream as the
secret key, we want to have a smaller key which is used for seeding. Then we want
the generator to produce a keystream which is as random looking as possible. Figure
2.2 shows a keystream generator used as an additive stream cipher. The decryption of

Keystream
generator

Key

xor

Keystream

Plaintext Ciphertext

m0,m1, . . . c0, c1, . . .

z0, z1, . . .

Figure 2.2: An additive stream cipher constructed from a keystream gener-
ator.

the ciphertext is very easy using a synchronous stream cipher. The receiver only needs
to generate the same keystream as the sender and apply the inverse1 function of h,
h−1(zt, ct) = mt. For the additive stream cipher, we have h = h−1 which results
in the useful property that the decryption device is exactly the same as the encryption
device.

As was briefly mentioned before, a synchronous stream cipher is not particularly
vulnerable to errors in the transmission, since each symbol is encrypted independently.
An active attacker can change a particular ciphertext symbol and render the corre-
sponding plaintext symbol erroneous, but all other symbols will remain correct. The
receiver has no direct possibility of validating the received message, thus additional
mechanisms for message authentication are needed to defend against these kind of
attacks.

1with respect to the plaintext symbol mt, since the keystream symbol should be identical (and thus
fixed) for both sender and receiver.
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However, if the attacker deletes or inserts a symbol into the ciphertext—or if that
happens by accident—the sender and receiver lose synchronisation and all plaintext
symbols following the deleted one will become erroneous during decryption. To defeat
this problem, perfect synchronisation between sender and receiver needs to be ensured
and techniques for detecting loss of synchronisation employed.

There are many applications where the synchronisation problem is much more se-
vere than a corrupt ciphertext symbol. For example, in a streaming video sequence
some erroneous symbols will only affect the picture over a limited area and during a
small time frame. But a synchronisation error will generate a completely useless video.
In such a setting, we could use a frame based communication protocol, where the
message sequence is first divided into smaller frames which are numbered with a frame
number, see Figure 2.3. We then add a feature to the stream cipher called an Initialisa-
tion Value (IV), which is a publicly known value used in the initialisation of the stream
cipher together with the secret key. Now, with a fixed key but with a changing IV, the
stream cipher will produce different sequences of keystream material for each IV. For
each frame the receiver tries to decrypt, he looks at the public frame number attached
to the frame of encrypted information and pre-initialises the stream cipher with the
new frame number as IV and the secret key, and then decrypts the information. If
synchronisation is lost for a single frame it will only affect a small amount of informa-
tion, until a new frame arrives and he can resynchronise. An important practical issue
is that the reinitialisation of the cipher with a new IV should be very fast, to be able to
handle high information rate sources such as streaming video.

Frame number 2 Encrypted data

Frame number 4 Encrypted data

Frame number 3 Encrypted data

Frame number 5 Encrypted data

Frame number 1 Encrypted data

Figure 2.3: Data is split up into separate frames. Each frame consists of a
publicly known unencrypted frame number and the encrypted
payload.

The other type of stream cipher is the self-synchronous stream ciphers. These
ciphers have the property that they will resynchronise after a finite number of received
ciphertext symbols. Thus the state of such a cipher is only dependent on the previous
generated keystream symbols. We have the following formal definition.
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Definition 2.2: A self-synchronising stream cipher is a finite state machine for which
the keystream is generated as a function of the key and a fixed number of the previous
ciphertext symbols.

It can be described at time t ≥ 0 by the equations

σt = (ct−v, ct−v+1, . . . , ct−1),
zt = g(σt, k),
ct = h(zt,mt),

where σ0 is the initial state, k is the key, g is the function which produces the keystream
zt, and h is the output function which combines the keystream and the plaintext to
produce the ciphertext ct. The initial state σ0 = (c−v, c−v+1, . . . , c−1) may be a
publicly known value. The encryption and decryption processes differ in contrast to

Encryption Decryption

σt σtσt

gg

h h−1 mtmt ctct

ztzt

kk

Figure 2.4: General structure of a self-synchronising stream cipher.

the synchronous stream ciphers and are pictured in Figure 2.4, where h−1 is the inverse
of h.

Since the keystream depends on the last v ciphertext symbols, the cipher will resyn-
chronise after v symbols if there is a transmission error. If that happens, the next v
symbols will be erroneous and the error propagation is thus worse than for a syn-
chronous stream cipher. However, if some ciphertext symbols are deleted or inserted
during transmission, the self-synchronising cipher will recover after v correct cipher-
text symbols, whereas the synchronous ciphers will never regain synchronisation.

Before we present some classical and interesting stream cipher designs, we shall
introduce some of the basic structures often found inside stream ciphers.
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2.2 Linear feedback shift registers

Recalling the keystream generator and its similarity to the OTP, we state that the fun-
damental property of a keystream generator is to produce as random looking symbols
as possible. The distribution of symbols should be uniform and unpredictable. A
good start is to use a Linear Feedback Shift Register (LFSR) for achieving a good dis-
tribution. As we will see later, the direct output of an LFSR is not a good keystream
generator since each symbol produced is simply a linear combination of the previous
symbols, and thus very easy to predict. Nevertheless, LFSRs are widely used compo-
nents inside stream ciphers.

An LFSR is a device made up by registers, able to hold one symbol at a time. The
symbols are elements from a field Fq, over which we have chosen to define the LFSR.
In stream cipher applications we often have q = 2 (binary field) or some extension
field of the binary field q = 2W , where W is the symbol size of the stream cipher.
Initially we can think of an LFSR as a hardware construction, though it is very easy to
implement in software as well. Thus we assume a system clock which is responsible
for the timing of all events. Figure 2.5 shows a general LFSR, where the circles denote
multiplication with the constant ci and ⊕ is the field addition operation. At each
clocking of the LFSR, the registers read a new symbol from their respective input, and
as the registers are coupled in series, the symbols move forward at each clocking. The
first register receives a new symbol which is a linear combination of the symbols found
in the registers after the previous clocking. The exact linear combination used for
producing the feedback symbol is determined by the feedback coefficients c0, c1, . . . , cl
shown in Figure 2.5. Since we need the actual feedback connection c0 to get any
symbols into the register, one normally assumes c0 = 1. As we do not need more
registers than necessary to make the feedback connection work, we also assume cl �= 0
and define the length of the LFSR to be l. At each time t ≥ 0 the device is clocked,

...

...

...

c0 c1 c2 cl−1 cl

sl−1 sl−2 s1 s0

Figure 2.5: General form of a Linear Feedback Shift Register (LFSR) of
length l.

and we obtain a new symbol st ∈ Fq at the output of the device. Due to the linear
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2.2 Linear feedback shift registers

feedback, the symbols st will always fulfil the linear recurrence equation

c−1
0 st+l − c1st+l−1 − c2st+l−2 − . . .− clst = 0, t ≥ 0.

If the field characteristic is 2, and we assume c0 = 1, we get the simpler form

l∑
j=0

cjst+l−j = 0, t ≥ 0. (2.1)

Using the feedback coefficients, we can give a compact description of an LFSR
through its feedback polynomial.

Definition 2.3: The feedback polynomial g is the polynomial g(x) = c0 − c1x −
c2x

2 − . . .− clx
l. The feedback polynomial is an element in the ring of polynomials

Fq[x], with x being the indeterminant.

The connection at c0 is called the feedback position and each cj �= 0, 1 ≤ j ≤ l
is called a tap position. An alternative description is the characteristic polynomial f(x),
which is the reciprocal polynomial of g(x), f(x) = −cl−cl−1x−. . .−c1x

l−1+c0x
l.

The content of the register at time t is St = (st+l−1, st+l−2, . . . , st) and is
called the state of the LFSR at time t. We note that this state (taken at any time),
together with the feedback polynomial, completely determines the produced sequence
st, t ≥ 0. The first l symbols to be produced, S0 = (sl−1, sl−2, . . . , s0), are loaded
into the registers at the start, and we denote this state the initial state or the starting
state of the LFSR.

Since there are only a finite number of possible states ql, the sequence produced by
the LFSR must repeat itself after a finite period, i.e. for every starting state we can find
a T such that st = st+T , t ≥ 0. The period depends on properties of the feedback
polynomial, and for our use in stream ciphers, we confine ourselves to the following
definitions and theorem regarding the period.

Definition 2.4: A polynomial g(x) ∈ Fq[x] is said to be irreducible over Fq if it can-
not be factored into polynomials of smaller positive degrees in the ring of polynomials
Fq[x].

Let F
∗
ql be the non-zero elements of Fql . It is well known that F

∗
ql forms a group

together with the field multiplication operation. An element a ∈ F
∗
ql is called a

generator if {ai : 0 ≤ i ≤ ql − 2} = F
∗
ql , i.e. the powers of a generate all non-zero

elements of Fql .

Definition 2.5: The extension field Fql of a field Fq is called a splitting field for the
polynomial g(x) ∈ Fq[x] if g(x) factors completely into linear factors in Fql [x] and
g(x) does not factor completely into linear factors over any proper subfield of Fql

containing Fq.
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2. Introduction to stream ciphers

Definition 2.6: An irreducible polynomial g(x) ∈ Fq[x] of degree l is said to be
primitive if the root of g(x) in the splitting field Fql is a generator of the multiplicative
group F

∗
ql .

The following theorem is given without proof [75].

Theorem 2.7: The period T of an LFSR with a primitive feedback polynomial g(x) ∈
Fq[x] of degree l and with a non-zero starting state is T = ql − 1. �

Thus, if we start with a non-zero state in the LFSR and use a primitive feedback
polynomial, all possible states except the all-zero state will appear during a period. An
LFSR with a primitive feedback polynomial is also called a maximum-length LFSR,
and the sequence produced is called a maximum-length sequence. Note that again the
initial state must be non-zero for the sequence to be maximum-length, and hereafter
it is assumed that the starting state is as such.

An LFSR is said to generate an infinite sequence s = s0, s1, . . . if there exists an
initial state for the LFSR such that the output sequence is equal to s. For a finite
sequence s = s0, s1, . . . , sn−1 of length n we say that an LFSR generates s if there
exists an initial state for the LFSR such that the vector of the first n symbols produced
is equal to s.

Next, we introduce the linear complexity of a sequence.

Definition 2.8: The linear complexity of a sequence s = s0, s1, . . . , si ∈ Fq, denoted
L(s), is the length of the shortest LFSR, defined over Fq, that generates the sequence.
If the sequence is the all-zero sequence, then the linear complexity is 0, and if no LFSR
can generate the sequence, then L(s) = ∞.

The linear complexity can be determined with the Berlekamp-Massey algorithm [78]
which efficiently computes the feedback polynomial of the LFSR given at least 2L(s)
of output symbols. Note again that a pure LFSR is not a good keystream generator.
As an example we can take a binary LFSR of length 128, which produces a maximum-
length sequence of length 2128 − 1. The Berlekamp-Massey algorithm needs only 256
consecutive bits in a known-plaintext attack to fully determine the feedback polyno-
mial and thus the complete sequence.

Sequences generated by maximum-length LFSRs have good statistical properties,
desirable for keystream generator construction, but we need to destroy the linearity,
i.e. increase the linear complexity, before the sequence can be used. There are several
methods for doing this as we will see in Section 2.5. One classical approach is to use
several binary LFSRs and combine the output from each of them using a Boolean
function as pictured in Figure 2.6.
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LFSR 1

LFSR 2

LFSR

f

n

zt

s1
t

s2
t

sn
t

Figure 2.6: A nonlinear combiner where the output of n LFSRs are com-
bined via the Boolean function f in order to destroy the linearity
of the LFSR sequences.

2.3 Boolean functions

A Boolean function is essentially a function which maps one or more binary input
variables to one binary output variable. More stringently, we write this as a mapping
from a vector of binaries x = (x1, x2, . . . , xn), where xi ∈ F2, 1 ≤ i ≤ n to a single
output bit

f : F
n
2 → F2.

For n input variables there exist 22n

distinct Boolean functions and we denote the
set of Boolean functions in n variables by Bn. There are several ways to represent a
Boolean function. If the number of input variables is small, a truth table can be con-
structed where all possible input vectors are listed with the corresponding output value.
Thus, we can represent the Boolean function f ∈ Bn as the string of length 2n of
output values f = [f(0, . . . , 0, 0) f(0, . . . , 0, 1) f(0, . . . , 1, 0) . . . f(1, 1, . . . , 1)].
Table 2.1 shows a truth table for a particular Boolean function of three variables.

If the number of input variables is large, the listing of all possible vectors is infea-
sible and we have to resort to a more compact description, for example the algebraic
normal form (ANF)

f =
∑
u∈F

n
2

λu

(
n∏
i=1

xui
i

)
, λu ∈ F2, u = (u1, u2, . . . , un). (2.2)

A product of m distinct variables is called an mth order product of the variables. To
simplify (2.2), we can state that every Boolean function f(x1, x2, . . . , xn) can be
written as a (modulus 2) sum of distinct mth order products of its variables, 0 ≤ m ≤
n.

Remark. In the context of Boolean functions, the addition sign + and summation
sign

∑
represent addition in the field F2, i.e. a modulus 2 sum.
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x1 x2 x3 f(x)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 2.1: The truth table of the Boolean function f(x1, x2, x3) = x1x2 +
x2x3 + x3.

The Hamming weight of a binary vector is the number of ones in the vector, and the
algebraic degree (or simply the degree) of a Boolean function f , denoted deg(f), is
the maximum value in (2.2) of the Hamming weight of u such that λu �= 0, or simply
the highest order of the terms in the ANF.

In the nonlinear combination generator, pictured in Figure 2.6 on page 25, it is
desirable to have a high algebraic degree in the Boolean function. The following well
known theorem, given without proof, explains the situation [85].

Theorem 2.9: Assume a nonlinear combination generator with n maximum-length
LFSRs, whose lengths L1, L2, . . . , Ln are pairwise distinct and greater than 2, com-
bined with a Boolean function f(x1, x2, . . . , xn) given in ANF. Then the linear com-
plexity of the keystream is f(L1, L2, . . . , Ln) evaluated over the integers rather than
over F2. �

For cryptographical applications, several other interesting properties of Boolean
functions have to be considered. First of all, we say that a Boolean function is balanced
if the number of zeros in the output column of the truth table is equal to the number
of ones. Equivalently we can say that f is balanced if the probability P (f(x) = 0) =
P (f(x) = 1) = 1

2 , when x is chosen uniformly over F
n
2 .

Definition 2.10: Functions of a degree of at most one are called affine. The set of all
affine functions in n variables is denoted An. We can write

An = {a0 + a1x1 + a2x2 + . . .+ anxn : ai ∈ F2, 0 ≤ i ≤ n}. (2.3)

An affine function with constant term a0 = 0 is called a linear function, thus the set
of linear functions in n variables is a subset of An.

We define the Hamming distance between two functions f(x), g(x) ∈ Bn as the
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2.3 Boolean functions

number of entries in the truth table output column where f(x) and g(x) differ,

dH(f, g) = #{x ∈ F
n
2 |f(x) �= g(x)},

where #A denotes the cardinality of the set A.
Next, we introduce the measure of nonlinearity.

Definition 2.11: The nonlinearity of a Boolean function f ∈ Bn, denoted Nf , is the
Hamming distance to the nearest affine function in An,

Nf = min
g∈An

dH(f, g).

A high nonlinearity is a desirable property since it will decrease the correlation between
the output and the input variables or a linear combination of input variables. Many of
the known attacks on stream ciphers utilise the weakness of such a correlation between
the combining Boolean function and some affine function.

Another important measure is the correlation immunity of the Boolean function.
The concept was first introduced by Siegenthaler [112] from an information theory
point of view.

Definition 2.12: Let X1,X2, . . . , Xn be independent binary random variables, each
taking the values 0 or 1 with probability 1

2 . A Boolean function f(x1, x2, . . . , xn) is
said to be t-th order correlation immune, if for each subset of t variables Xi1 ,Xi2 , . . . ,
Xit with 1 ≤ i1 ≤ i2 ≤ · · · ≤ it ≤ n, the random variableZ = f(X1,X2, . . . , Xn)
is statistically independent of the random vector (Xi1 ,Xi2 , . . . , Xit).

A Boolean function which is both balanced and t-th order correlation immune is
said to be t-resilient.

Siegenthaler [112] showed that there is a tradeoff between the algebraic degree and
the order of correlation immunity.

Theorem 2.13: Let f(x) be a balanced Boolean function in n variables of algebraic
degree d which is t-th order correlation immune. Then the following upper bound
must hold {

d+ t ≤ n− 1 if 1 ≤ t ≤ n− 2,

d+ t ≤ n if t = n− 1.
(2.4)

�
To summarise the properties of Boolean functions and the implications of their

value when used as a combining function in a keystream generator we conclude that

Algebraic degree A high algebraic degree is desirable since it increases the linear com-
plexity of the resulting keystream.

Nonlinearity A high nonlinearity gives a weaker correlation between the input vari-
ables and the output variable and increases the resistance to correlation attacks.
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Correlation immunity High correlation immunity forces the attacker to consider sev-
eral input variables jointly and thus decreases the vulnerability of divide-and-
conquer attacks.

The specifics of the generic attacks correlation attacks and divide-and-conquer attacks
will be given in Section 2.6. The very basic properties of Boolean functions have been
introduced, and a thorough discussion on more advanced properties and details on the
construction of good Boolean functions is given in [94].

2.4 S-Boxes

An S-Box (Substitution Box) can be considered as a vector output Boolean function.
Formally we have the following definition.

Definition 2.14: A n×m S-Box is a mapping

S : F
n
2 → F

m
2 .

We write S[x] = y to denote the output value y ∈ F
m
2 of the S-Box S on in-

put x ∈ F
n
2 . Writing the S-Box as a function of a binary vector, we have S[x] =

(f1(x), f2(x), . . . , fm(x)) where x = (x1, x2, . . . , xn) is an n bit binary vector and
fi(x), i = 1 . . .m are Boolean functions of n bit inputs.

To specify an S-Box we could of course give the component Boolean functions
fi, 1 ≤ i ≤ m. However, this is normally cumbersome since Boolean functions in
the ANF representation often have many terms and would be impractical to write
out. Nevertheless, for a hardware realisation of an S-Box, this might be the preferred
description. For S-Boxes where n is not too large, one could specify it by a table of 2n

entries where each entry is a m bit number. This is the preferred way of dealing with
smaller S-Boxes in software, implementing them as table lookups.

A third possibility is to consider the S-Box an algebraic mapping and give the
algebraic expression of the mapping. Naturally this is only feasible if the S-Box was
defined using that mapping. Otherwise it is a hopeless task of finding a simple algebraic
expression for a random mapping. One example of an algebraic description is the
inverse mapping x → x−1 in F2n . Here x is considered an element in F2n rather
than an element in the vector field F

n
2 . The inverse mapping is used, for example, in

the new AES block cipher.
The interesting properties of S-Boxes for stream ciphers are very much the same as

those for Boolean functions, but now extended to a vector domain. This extension is
done by considering the minimum value over all linear combinations of the compo-
nent output functions fi, 1 ≤ i ≤ m. We have the following formal definitions and
lemma, where F

� is the multiplicative subgroup of F and S is an n×m S-Box.
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Lemma 2.15 (from [110]): A function S = (f1, f2, . . . , fm), where each fi, 1 ≤
i ≤ m, is a Boolean mapping F

n
2 → F2, is uniformly distributed (balanced) if and

only if all nonzero linear combinations of f1, f2, . . . , fm are balanced. �
The definition of algebraic degree also considers linear combinations of the com-

ponent functions.

Definition 2.16 (from [94]): The algebraic degree of S is defined as the minimum
degree of all nonzero linear combinations of the component functions of S, i.e.

deg(S) = min
τ∈F

m∗
2

deg(
m∑
i=1

τifi), where τ = (τ1, . . . , τm) ∈ F
m∗
2 .

The nonlinearity follows in a similar manner.

Definition 2.17 (from [93]): The nonlinearity of S = (f1, f2, . . . , fm), denotedNS ,
is defined as the minimum among the nonlinearities of all nonzero linear combinations
of the component functions of S, i.e.

NS = min
τ∈F

m∗
2

nl(
m∑
i=1

τifi), where τ = (τ1, . . . , τm) ∈ F
m∗
2 ,

where nl(f) denotes the nonlinearity of f .

S-Boxes are very common in block cipher designs but have been used more and
more in stream ciphers as well. Typically we see 8 × 8 S-Boxes or 8 × 32 S-Boxes
conforming with a byte size or a cipher symbol size of 32 bits.

Depending on where the S-Box is employed in the stream cipher, the above prop-
erties are of more or less importance. Almost always we would like to have a balanced
function, since unbalanced functions have a probabilistically biased output, given a
uniform distribution on the input variables. This bias could be used in a correlation
attack. The nonlinearity should be as high as possible since the primary goal of the
S-Box is to destroy the linearity of the input. The algebraic degree should also be high,
and recent research on algebraic attacks (see Section 2.6) might indicate that the al-
gebraic degree must be higher than previously believed. Also low algebraic equations
which relate input and output variables with high probability, should be avoided due
to these algebraic attacks.

The construction of good S-Boxes is a difficult subject and an overview of results
and methods, focusing on stream ciphers, is given in [94].

2.5 Some classic stream cipher designs

In this section we will present some general design techniques and also look at some
specific designs. Stream ciphers based on LFSRs can be divided into three general cat-
egories; nonlinear combination generators, nonlinear filter generators, and clock-controlled
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generators. Naturally, the classification of ciphers into these categories is not distinct as
several design methods can be used simultaneously.

The nonlinear combination generator was introduced in the discussion on Boolean
functions c.f. Figure 2.6 on page 25. The generator consists of n LFSRs, whose out-
puts are combined in a Boolean function f . The output of the Boolean function is
the keystream output. The Boolean function f must have high algebraic degree, high
nonlinearity and preferably a high order of correlation immunity. In view of Theo-
rem 2.13, we know that we must employ a large number of LFSRs to get both high
algebraic degree and a high order of correlation immunity.

The nonlinear filter generator takes a different approach and uses one single LFSR,
from which the inputs to the Boolean function are taken, see Figure 2.7. In this case

...

LFSR

f

zi

sl−1 sl−2 s1 s0

Figure 2.7: Structure of a nonlinear filter generator.

the Boolean function f is called the filtering function. Not all elements of the LFSR
need to be taken as inputs to the filtering function. The nonlinear filter approach is
a more efficient way of building stream ciphers in software if the LFSR is built over
an extension field F2W . This is due to the fact that shifting a maximum-length LFSR
defined over F2W is a rather costly operation in software.

Key [69] proved an upper bound on the linear complexity L(s) for a nonlinear
filter generator ofL(s) ≤ ∑d

i=1

(
l
i

)
, where d is the algebraic degree of f , l is the length

of the LFSR and s is the generated keystream. In [47], Golić gives a set of criteria
needed for the nonlinear filter generator to be able to resist many known attacks.

In the presentation of both the nonlinear combination generator and the nonlin-
ear filter generator given in this section, we considered only a pure Boolean function
as the combiner/filter. We could however extend the ideas and use a time varying
function or a combiner/filter mechanism with memory. We will use the term Finite
State Machine (FSM) generators for this type of generator. Two recent examples of
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FSM generators are the E0 stream cipher used in the Bluetooth standard [10] for short
wireless networking and SNOW, a stream cipher family presented in Chapter 8.

The principal difference from the pure combiner/filtering generator is that a part
of the state space is updated via a nonlinear process. Hence, for FSM generators the
properties of pure Boolean functions are not directly applicable, especially the tradeoff
between algebraic degree and correlation immunity does not hold. Golić [42] has
pointed out the importance of small correlations between a linear combination of
input variables and output variables, also in combiners with memory.

Another interesting approach is to include key dependent S-Boxes in the combin-
ing/filtering function. This makes cryptanalysis much harder than for a pure Boolean
function since effectively, the cipher is not completely specified until the key is known.
Rose and Hawkes recently proposed the cipher Turing [102] based on these ideas.

The final category of stream ciphers is the clock-controlled generators. They differ
from the above in the sense that the LFSRs are not clocked regularly. In the nonlin-
ear combination generator and the nonlinear filter generator we have a system clock2

which advances the LFSR one step for each clocking and for each clocking we produce
a new keystream bit or several keystream bits. The idea in a clock-controlled generator,
is to control the number of clockings of the LFSRs using some irregular signal. The
clocking signal could be the output of another LFSR or some other internal variable
of the cipher. The linearity of the output of the irregularly controlled LFSR is then
destroyed and attacks based on a regular motion of the LFSR are harder to mount.
One classical example of a clock-controlled generator is the alternating step generator
proposed by Günther [41], pictured in Figure 2.8. The operating procedure of the

LFSR R1

LFSR R2

LFSR R3

AND

AND

System clock

zt

Figure 2.8: The alternating step generator. The black squares indicate the
clocking input to the LFSRs and the solid circle on the lower
AND-gate is an inverter.

generator is a repetition of the following steps.

2In a software implementation the system clock of the cipher is an imaginary or virtual clock and usually
does not coincide with the CPU clock.
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(i) Register R1 is clocked by the system clock.

(ii) If the output of R1 is 1 then R2 is clocked and R3 is not clocked but its previous
output bit is repeated.

(iii) If the output of R1 is 0 then R3 is clocked and R2 is not clocked but its previous
output bit is repeated.

(iv) The sum of the outputs from R2 and R3 is taken as the keystream output.

Two other very elegant clock-controlled generators, the shrinking generator and the
self-shrinking generator are presented and analysed in Chapter 6 and 7 respectively.

Apart from the three types of stream ciphers based on LFSRs discussed here, there
exists other designs that do not use an LFSR as a component. One example is the
well-known cipher RC4, which is a stream cipher with a symbol size of 8 bits (1 byte).
The state space consists of an array of 256 elements, containing the numbers 0 . . . 255.
The array is slowly changing at each time instance by swapping elements in the array,
and a new keystream symbol is produced by reading off different entries in the array.
The index of extraction is also determined from the elements in the array. A more
complete description and an attack can be found in [77].

Other interesting stream cipher designs which do not use an LFSR are the software
oriented ciphers SEAL 3.0 [98, 99], SCREAM [54] and MUGI [120].

2.6 Generic attacks on stream ciphers

In this section we will introduce some well known generic attacks and point out some
specific design criteria for decreasing their success probability. Most of the cryptanal-
ysis on stream ciphers is performed under a known plaintext assumption. For the
additive stream cipher, this means that the attacker has direct access to the keystream
output from the generator. The attack with which we will compare other attacks, is
the exhaustive key search attack. This attack can always be performed by simply trying
all possible keys until the correct one is found.

When comparing attacks we have three complexity measures that are of interest.

Time complexity The required number of operations that are needed to carry out the
attack. The operations counted can be either low-level operations as "CPU in-
structions" or "cipher clockings", or high-level operations as "table lookups" or
"solving a matrix equation". The specific operation is not always specified since
it often does not matter as long as we can perform the operation in polynomial
time. The time complexity of the attack is normally exponential in the length
of the LFSR or in the key length, and thus it is of less theoretical importance to
specify which polynomial operation we are performing. However, in comparing
attacks from a practical perspective, it can clearly be of interest.
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We also separate the time complexity into pre-computational complexity and
active attack complexity. The pre-computational part can be performed without
the observed keystream and is often required to be performed only once. Then
the result can be used successively for attacking the cipher with different keys.
The active attack part is the complexity of the operations we need to perform
while observing the keystream.

Data complexity The amount of observed keystream material that is required for the
attack to be fully successful or successful with a certain probability.

Memory complexity The required amount of memory needed to perform the attack.
This parameter is coupled with both the time and the data complexity. If we
have a pre-computational phase in the attack the result must be stored in mem-
ory for later use in the active part. Some attacks might build a search tree in
memory based on the observed keystream material. For other attacks we need
the complete observed keystream available for random access and thus the mem-
ory complexity is equal to the data complexity.

When discussing complexities, it is common to use an order notation.

Definition 2.18 (Big Oh-notation [91]): Let f and g be two functions mapping the
natural numbers to themselves: f is O(g) if and only if there exist natural numbers N
and c such that, for all n ≥ N , we have f(n) ≤ c · g(n).

Typically, the order notation states how the attack complexity grows depending on,
for example, the length of the LFSR or the size of the key. For example, we have
exponential growth O(2n), polynomial growth O(n3) or linear growth O(n).

Consider the exhaustive key search attack on a nonlinear filtering generator with k
bits of key, where the length of the LFSR is k bits. The key initialisation is simply done
by loading the LFSR with the key bits. The attack is performed by storing the first
2k bits of the observed keystream. We then load each possible key into the cipher and
clock it 2k times and compare the output of each run with the stored sequence. When
we find a match, we have identified the correct key. We see that the time complexity
is O(k2k), the data complexity is O(k) and the memory complexity is O(k).

Tradeoff attacks

For many ciphers we can do a tradeoff for the time, memory, and data complexity in
the case of an exhaustive key search. Consider again the above attack on a nonlinear
filter generator, but now we start with a pre-computation of the generated sequences
for 2k/2 randomly selected keys. We store the first 2k bits of output for each chosen
key together with the key used. In the active phase we observe 2k/2 bits of keystream
material, generated with the unknown key. Now, scanning the observed sequence
and for each position, we try to match the next 2k bits with the sequences we have
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pre-computed. When we find a match we can directly get the state of the LFSR that
generated the subsequence. Reversing the LFSR to the initial state, we have now found
the correct key. This approach has time complexityO(2k/2) for scanning the observed
sequence and matching subsequences to our pre-computed database. The memory
complexity is O(k2k/2) for storing the pre-computed sequences and the respective
key, and finally the data complexity is O(2k/2).

This tradeoff between attack complexities is not only limited to an exhaustive key
search, but could be employed in other attack scenarios as well, using the same basic
ideas. Examples of tradeoff attacks can be found in [8, 86, 105, 7, 3].

To foil a tradeoff attack, the state space of the cipher must be at least twice the
size of the key space. In the context of stream ciphers, this usually means that the
combined lengths of the LFSRs in the cipher must be twice as large as the key size and
during the initialisation of the cipher, the key material must be spread into the state
space in a random fashion.

Guess-and-determine attacks

As the name suggests, in this attack we start by guessing some internal variables of the
cipher (e.g. a part of the LFSR) and then try to determine the other variables based on
the observed keystream and the evolution of the cipher in time. If our guess is correct,
we can confirm it by running the cipher for some time and match the output from our
trial generator with the observed sequence. If our guess is false, we simply make a new
guess and start over again.

The time complexity of such an attack is O(2b), where b is the number of bits we
have to guess, since in the worst case we have to try all possible combinations of the
guessed bits. The difficult part of this attack is to find which part of the state space to
guess in order to obtain the rest.

An example [41] of a guess-and-determine attack on the alternating step generator,
presented in Section 2.5 (Figure 2.8), is to guess the initial state of the register R1.
Knowing that, we can determine the clocking sequences for both R2 and R3, and the
output of the generator is simply a sum of the output bits of R2 and R3. If the lengths
of the registers are l1, l2, and l3 respectively, we have, after l2 + l3 observed keystream
bits, a system of linear equations for the initial states of R2 and R3 which is easily
solved. The time complexity of this attack is O(2l1) for guessing the initial state of R1
correctly.

Some other examples of guess-and-determine attacks can be found in [58, 6].

Divide-and-conquer attacks and correlation attacks

The correlation attack was introduced by Siegenthaler in [112, 113]. Siegenthaler
exploited the fact that in certain cases, one can find a correlation between some linear
combination of input variables to the combining function and the output from the
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combining function, and then use that correlation to extract information about the
correlated input variables.

In the simplest case, a correlation means that the output is equal to one of the
input variables with a probability not equal to 0.5. As a simple example we can take
the nonlinear combining function to be the logical AND-gate with two inputs. For
either input, we see that the output coincides with the input with probability 0.75.
These correlation probabilities are usually written as 1

2 + ε, where ε is the correlation
between the variables. For the case with an AND-gate, the correlation is ε = 0.25.

Now, take any nonlinear Boolean function f with some correlation property and
an example can be given to illustrate Siegenthaler’s attack.

LFSR1

LFSR1

LFSR2

LFSR3

LFSR4

Length

TEST

Correlated ?

Keystream zt

f

s1
t

s2
t

s3
t

s4
t

l1

l2

l3

l4

Figure 2.9: Principles of Siegenthaler’s correlation attack.

Example 2.19: Assume a nonlinear combining generator with four LFSRs of lengths
l1, . . . , l4, and a given keystream zt, t ≥ 0, generated by some unknown initial state.
To perform an exhaustive key search we would have to try

∏4
i=1(2

li − 1) different
initial states. But, if we know that there is a correlation between the keystream output
zt, t ≥ 0 and each of the LFSR streams sti, i ≥ 0, we can test each LFSR separately. So
for the first LFSR1 we assume P (s1

t = zt) = 1
2 + ε, and then try each possible initial

state for LFSR1 in a separate LFSR and xor the produced sequence to the observed
keystream, see Figure 2.9. For LFSR1 we have to try (2l1 − 1) different initial states.

The testing is done by measuring the number of zeros in the xored sequence.
The zeros indicate that the keystream output and the separate LFSR have the same
symbol in that position, and if the relative frequency of zeros is equal to the expected
correlation 1

2 + ε, we have found the most probable initial state of LFSR1. We can
then proceed in this fashion for each of the remaining registers, and thus reduce the
complexity to merely

∑4
i=1(2

li − 1). �

In order to prevent Siegenthaler’s divide-and-conquer attack, the combining func-
tion should have high correlation immunity. Assume that the Boolean function used

35



2. Introduction to stream ciphers

is correlation immune to the 1st order. Then we cannot separate the constituent LF-
SRs into single targets, but need to consider them pairwise, which increases the time
complexity of the attack drastically.

Meier and Staffelbach refined the correlation attack in [82, 83] using a slightly
different model, see Figure 2.10. The approach is known as a fast correlation attack.
Assume that there is a correlation between one shift register (LFSR1) and the output

LFSR1

BSC
Keystream 

0

1

0

1

s1
t zt

Figure 2.10: Model used by Meier and Staffelbach.

keystream zt, such that P (s1
t = zt) = p = 1

2 + ε, t ≥ 0. Meier and Staffelbach
viewed this as if the sequence from LFSR1 was transmitted over a Binary Symmetric
Channel (BSC) [24], with crossover probability 1 − p, i.e. the BSC transmits the
symbol correctly with a probability p. The combined effect of the other shift registers
and the nonlinear combiner is modelled as the BSC. Since the feedback polynomial of
LFSR1 is linear, each st for different tmust satisfy a number of linear equations, based
on how many taps the feedback polynomial has, and where the taps are located. If the
correlation between st and zt is high enough, most of the corresponding symbols in
the keystream zt must also fulfil these linear equations.

So, by attempting to slightly modify the sequence zt to compensate for a possible
crossover in the BSC model, Meier and Staffelbach could show that the sequence
s = s1

0, s
1
1, . . . , s

1
N can be recovered and thus also the initial state of the shift register.

The drawback of this algorithm is that it is only successful if the feedback poly-
nomial has very few taps. Several papers contributed minor improvements using the
same technique, see [15, 88, 89, 95, 96].

Recently, the idea of a communication channel was reconsidered by Johansson and
Jönsson in [65] where they identified an embedded convolutional code in the sequence
s and could apply standard decoding techniques, e.g. the Viterbi algorithm, to recover
the initial state even if the correlation probability was very close to 0.5. Typically,
a shift register of length 40 with a correlation probability of 0.45 can be attacked
with modest computational effort. This algorithm is independent of the number of
taps of the feedback polynomial. Several papers providing improvements followed,
see [64, 66, 87, 14, 13]. For a comprehensive discussion of fast correlation attacks we
refer to [67].
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2.6 Generic attacks on stream ciphers

Algebraic attacks

The algebraic attacks are a rather new approach to cryptanalysis even though the basic
ideas have been known in mathematical literature for some time. The recent interest
was initiated in a paper by Kipnis and Shamir [70], where they introduced a technique
called relinearisation. The keystream generated by a keystream generator can in most
cases be described by a complex system of multivariate polynomial equations, with the
key bits being the indeterminants. The general solution of such a system is known
to be NP-complete even in the simplest case of only quadratic equations over F2.
The classical method for solving such systems is the algorithm by Buchberger using
Gröbner bases3. The algorithm in [70] was designed to handle overdefined systems of
ε · n2 quadratic equations in n variables, where ε ≤ 1/2. Their method is successful
in many cases but the criteria for success and the complexity of the approach are not
well understood.

In [20], Courtois et al. gave a theoretical and practical analysis of the algorithm
in [70] and extended the work with the XL-algorithm (eXtended Linearisations), based
on bounded degree Gröbner bases and linearisation. The XL-algorithm handles higher
degree multivariate systems of equations, but still, the criteria for success and the com-
plexity dwell in darkness. Some authors do not accept the universality of the method
and their main concern is that the number of independent linear equations after lineari-
sation does not grow fast enough for the system to become solvable [90]. Nevertheless,
a series of papers followed on the subject and the techniques have been successfully ap-
plied in breaking some stream ciphers [22, 20, 23, 21, 19].

Side channel attacks

Apart from the attacks discussed above, which are more direct attacks on the keystream
generator algorithm, there exist others that try to attack a certain implementation
of an algorithm. They are often called side channel attacks since these attacks utilise
information leakage from other channels than the ciphertext or keystream output.
Two examples of side channel attacks are power analysis and timing attacks.

The general idea in a power analysis attack is to measure the power usage of a cryp-
tographical system, for example, when implemented on a smart card or other tamper-
resistant package. Electromagnetic emissions can be used to mount similar attacks.
This kind of attack has been shown to be surprisingly efficient on implementations of
both block ciphers and various public-key ciphers.

In 1999, Kocher, Jaffe and Jun presented a paper on differential power analysis on
DES [73]. They showed how the power usage of DES, in a certain implementation,
reveals the structure of the cipher and small (6 bits) portions of the key can be guessed
and verified independently. Their analysis can also locate conditional branches, for

3The name Gröbner bases was introduced by Bruno Buchberger in his Ph.D. thesis in honour of his
advisor, Wolfgang Gröbner.
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example, the difference between square and multiply4 in modular exponentiation and
thereby reveal information about the secret exponent in, for example, RSA.

In a timing attack, the attacker measures the execution time or the delay of various
steps in the algorithm. This can reveal information on the secret key bits if they are
evaluated for branching, where the branches have different execution time. A timing
attack can also be applied to clock-controlled generators, that outputs keystream bits
at irregular intervals. By measuring the intervals, the attacker can obtain information
on the clocking sequence. Such weaknesses can be prevented by buffering the output,
but still, the ideas are very relevant in an actual implementation of a cipher. Examples
of timing attacks can be found in [26, 72]

2.7 Security of a stream cipher

In the design of a stream cipher, the goal is to make it act as similar to the One-Time
Pad as possible, with the convenience of only using a limited number of bits for the
key. The security of the OTP comes from the fact that the keystream sequence is drawn
with uniform probability from the set of all possible sequences. Therefore, for the ad-
ditive stream cipher, the generated keystream material should be as random looking as
possible. An attacker should not be able to tell the difference between a truly random
sequence and the sequence generated by the keystream generator. If such a difference
could be measured, a distinguishing attack can be mounted. A distinguishing attack
on an additive stream cipher could be very useful if the number of possible messages
are limited. From the observed ciphertext and the guessed plaintext, the attacker can
compute the keystream sequence and if that derived sequence has any statistical devia-
tions from a truly random sequence, the attacker knows that the guessed plaintext was
correct.

The generated keystream will always leak information about the key and will al-
ways have statistical deviations from a truly random sequence. Hence, if given a long
enough keystream sequence, the attacker can most likely derive some useful informa-
tion, but the aim for any stream cipher is to minimise that information leakage, so
that the attacker cannot gain from using it, compared to exhaustively searching for the
correct key.

The security of a stream cipher is thus always measured relative to the complexity
of exhaustively searching for the correct key. If the complexity of an attack is less than
that of the exhaustive search, the cipher is said to be broken.

This definition of a broken cipher is the one used by most cryptographers while
discussing the theoretical aspects of cryptology. For a stream cipher in a practical
application, the situation is much less clear. Consider for example a distinguishing
attack on a stream cipher with a 256 bit key. It makes no sense talking about that
cipher as (practically) broken if the required length of the guessed plaintext is say 2250

4"Square-and-multiply" is a standard technique for fast exponentiation modulo an integer.
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bits5. Apart from these insanely huge numbers (from a practical perspective), the
actual security of a system using encryption is often much more dependent on other
parts of the system than the cipher, e.g. protocols, users, key management/storage and
implementation specific problems like software bugs [38].

However, the theoretical attacks are interesting and important for the development
and understanding of the security of stream ciphers. Sometimes they reveal weaknesses
that in the future can lead to practical attacks, which could concern us all. In this
thesis, attacks of both theoretical and practical interest will be presented.

2.8 Summary

In this chapter we have introduced the ideas of stream ciphers and notably the addi-
tive stream cipher. We have seen that an additive stream cipher can be considered as
a keystream generator, producing keystream symbols which are added (xored) to the
plaintext to form the ciphertext. Some of the inner building blocks of stream ciphers
were discussed, starting with the LFSR. We have recalled fundamental results on peri-
odicity and introduced the linear complexity of a sequence, which is a measure of the
minimal length of an LFSR that can generate the sequence. Next, we have introduced
Boolean functions and their usefulness in destroying the inherent linearity in sequences
produced by LFSRs. Also some properties of Boolean functions have been presented,
including the nonlinearity and correlation immunity of a Boolean function. The ideas
from Boolean functions were then extended to S-Boxes, which are vector outputs of
several Boolean functions sharing the same input variables.

After the discussion on fundamental blocks used in design, we have presented
some general design techniques; the nonlinear combination generator, the nonlinear
filter generator, and clock-controlled generators. The last section on generic attacks
on stream ciphers starts with the three most important complexity measures for an
attack; time complexity, data complexity, and memory complexity. Continuing with
the attacks, we have discussed different approaches to attacking a stream cipher and
have given some examples on how to mount them in a general setting.

The chapter is concluded with a discussion of what it means for a stream cipher to
be secure.

This completes the introduction to the subject of this thesis and in the following
chapters we will discuss more specific aspects of cryptology.

5Current estimates of the number of electrons in the universe is roughly 2266 [76].

39



2. Introduction to stream ciphers

40



3
Cryptanalysis of

SOBER-t16 and SOBER-t32

At a recent evaluation procedure in Europe for new cryptographical primitives called
the NESSIE1 project [92], two similar stream ciphers were submitted by Hawkes

and Rose from Qualcomm Australia, called SOBER-t16 [56] and SOBER-t32 [57].
These are two LFSR based stream ciphers developed from previous versions of the
stream cipher named SOBER.

The SOBER-t16 and SOBER-t32 stream ciphers consist of a keyed generator pro-
ducing a pseudo-random sequence that is added to the plaintext. The generators can
roughly be described as being nonlinear filter generators with an additional “stutter-
ing” step before producing the output. The stuttering will irregularly decimate the
keystream output sequence according to values in the keystream sequence.

It is known that as a result of this irregularity, one can potentially use a power
analysis attack or a timing attack to recover the input to the stuttering step [106].

In this chapter we consider several ways of mounting distinguishing attacks on
SOBER-t16 and SOBER-t32. The attacks are based on combining linear approxima-
tions of the nonlinear filter with the linear recurrence, defined through the feedback
polynomial. Linear approximations have previously been used in e.g. the BAA attack
on stream ciphers [28] and linear cryptanalysis on block ciphers [79] and have sub-
sequently been used in the more recent linear masking technique [17]. In our case
we derive the distribution of the noise introduced through the linear approximations
from simulations. We consider attacks on SOBER-t16 both including and excluding
the stuttering step, and an attack on SOBER-t32 excluding the stuttering step. The
results presented in this chapter were originally presented in [32].

1New European Schemes for Signatures, Integrity and Encryption
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The chapter is organised as follows. In Section 3.1 the stream ciphers SOBER-t16
and SOBER-t32 are described. Then in Section 3.2, we sidetrack slightly and recall
some basic results regarding hypothesis testing, including the Neyman-Pearson lemma
and the Chernoff information measure. Again focusing on the cipher at hand, we
start by explaining the attack on SOBER-t16 without stuttering in Section 3.3. This
is generalised to an attack on the full SOBER-t16 in Section 3.4. In Section 3.5 we
describe a simple attack on SOBER-t32 without stuttering. In Section 3.6 we then
present some recent related work on an attack on the full SOBER-t32. Finally, a
summary is given in Section 3.7.

3.1 A description of SOBER-t16 and t32

Both SOBER-t16 and SOBER-t32 are word oriented stream ciphers. The symbol size
is 16 bits for t16 and 32 bits for t32. The structures of t16 and t32 are very similar
and we will here describe them as one cipher. The specific parameters for both t16
and t32 will be given as required. To simplify the description of the common parts of
t16 and t32, we will use the notation W to denote the symbol size. Thus, W is either
16 or 32 bits, depending on which cipher we are considering. The operations in the
ciphers include both addition in an extension field F2W and addition modulo 2W .

Remark. Throughout this thesis, we will do addition in finite fields, finite rings and
the infinite real field. The notation ⊕ will be used for the finite field addition, � for
the finite ring addition and + for the real field addition. In the case where there is no
risk of confusion, we will simply use + for readability.

There are three main building blocks for the SOBER stream ciphers. The first
is a word oriented LFSR that produces a sequence denoted st, t ≥ 0. Secondly,
a nonlinear filter (NLF) takes some of these symbols as inputs and produces a new
sequence vt, t ≥ 0. Finally, there is a so-called stuttering unit. The stuttering unit
takes vt, t ≥ 0, as input and produces an irregular output zn, n ≥ 0. The overall
structure is pictured in Figure 3.1.

The LFSR

The LFSR is a length 17 shift register, where each register element contains one word
of W bits. Each word is considered as an element in an extension field F2W . The
state of the LFSR at time t will be denoted by a vector St = (st, st+1, . . . , st+16).
The next state of the LFSR is obtained by shifting the previous state one step, and
calculating a new word st+17. The new word is calculated as a certain linear com-
bination of the contents of the previous state. Thus the next state will be St+1 =
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Figure 3.1: Overall structure of SOBER-t16 and SOBER-t32.

(st+1, st+2, . . . , st+17) where

st+17 =
16∑
i=0

cist+i, (3.1)

for some known constants ci ∈ F2W , i = 0, 1, . . . , 16. The arithmetic in (3.1) is
performed in the extension field F2W . The specific extension fields and recurrence
equations for t16 and t32 are summarised as follows:

43



3. Cryptanalysis of SOBER-t16 and SOBER-t32

SOBER-t16
Defining polynomial for F216 : x16 + x14 + x7 + x6 + x4 + x2 + x+ 1
Linear recurrence equation: st+17 ⊕ αst+15 ⊕ st+4 ⊕ βst = 0,
where α = 0xE382 and β = 0x67C3.

SOBER-t32
Defining polynomial for F232 : x32 + (x24 + x16 + x8 + 1)(x6 + x5 + x2 + 1)
Linear recurrence equation: st+17 ⊕ st+15 ⊕ st+4 ⊕ αst = 0,
where α = 0xC2DB2AA3.

The field elements α and β have been given in a hexadecimal form, corresponding to
a polynomial basis. See [56, 57] for more details.

The NLF function

At time t, the NLF function takes five words (st, st+1, st+6, st+13, st+16) from the
LFSR state and one constant value (Konst ∈ F2W ) as input, and produces, through a
nonlinear function, an output word denoted by vt. The value ofKonst is determined
during the initialisation phase of the LFSR and is kept constant throughout the entire
session. The operations involved in the NLF function are xor (denoted ⊕), addition
modulo 2W (denoted �) and application of an S-Box.

The output of the NLF function, vt, at time t, can be written as

vt = ((st+1 � st+6 � f(st � st+16)) ⊕Konst) � st+13, (3.2)

where f(x) is a function, different for SOBER-t16 and SOBER-t32, and which in
both cases involves an S-Box application. The interior design of the function f is
pictured in Figure 3.2. At first, the input is partitioned into a high part containing
the 8 most significant bits and a low part containing the remaining bits. The high
part then addresses an S-Box with W bits of output. The 8 most significant bits are
taken directly as the f -function output, whereas the least significant part of the S-Box
output is first xored to the low part from the input, see Figure 3.2.

Stuttering

Before producing the running key, the output from the NLF is passed through a stut-
tering unit. The stuttering decimates the NLF output, thus making a correlation
attack harder. The first output from the NLF, v0, is taken as the first stutter control
word (SCW). The SCW is divided into pairs of bits (called dibits). Starting with the
least significant dibit, the stuttering is determined from the value of these dibits. Ac-
tions are taken according to the value of the dibit, as listed in Table 3.1. The constant
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S-Box

W bits input

8 bits W − 8 bits
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Combined W bits of output

Partition input

Figure 3.2: The structure of the f -function in SOBER-t16 and SOBER-t32.

C has value 0x6996 for t16 and 0x6996C53A for t32, and ∼ C denotes the bitwise
complement of C.

Dibit Action

00 1. Clock the LFSR, but do not output anything.
01 1. Clock the LFSR.

2. Set the value of the next keystream word to
be the xor between C and the NLF output.

3. Clock the LFSR again, but do not output anything.
10 1. Clock the LFSR, but do not output anything.

2. Clock the LFSR.
3. Set the value of the next keystream word to

be the value of the NLF output.
11 1. Clock the LFSR.

2. Set the value of the next keystream word to
be the xor between ∼ C and the NLF output.

Table 3.1: The possible actions taken in the stuttering unit depending on
the value of the dibit.
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When all dibits in the SCW have been used, the LFSR is clocked once and a new
SCW is read from the output of the NLF. This word determines the next 8 or 16
actions, depending on whether we are looking at SOBER-t16 or SOBER-t32. The
resulting stream from the stuttering unit, denoted zn, is the running key.

This concludes the brief description of SOBER-t16 and SOBER-t32. For a more
detailed description, especially regarding the key initialisation, we refer to [56] and
[57]. Before we present the attacks, we will recall some basic tools in hypothesis testing.

3.2 Hypothesis testing—the short story

A frequently occurring problem in cryptanalysis is the determination of whether a
sequence of observations is more likely to be sampled from a device having output
distribution P0, or from a device having output distribution P1. This problem arises
in many other areas as well (e.g. radar technology and automatic medical surveillance)
and the tools and methods are well known. A thorough introduction to the subject
can be found in [24, 81, 117].

Here we will confine ourselves to a discussion of the following three issues:

� The form of the optimum test.

� The probability of making a wrong decision.

� The number of samples needed in order to obtain a certain level of confidence
in the decision.

Assume that we have a sequence of n independent and identically distributed
(i.i.d.) random variables X1,X2, . . . , Xn over an alphabet ℵ. The distribution is
denoted Q(x) = Pr(Xi = x), 1 ≤ i ≤ n and the sampled values are denoted
x = x1, x2, . . . , xn, where xi ∈ ℵ, 1 ≤ i ≤ n. We consider two hypotheses:

• H0 : Q = P0.

• H1 : Q = P1.

Let φ(x) be a decision function where φ(x) = 0 implies that H0 is accepted
and φ(x) = 1 implies that H1 is accepted. Furthermore, let Pn0 (x) denote the si-
multaneous probability

∏n
i=1 P0(xi), and similarly we have Pn1 (x) =

∏n
i=1 P1(xi).

Since φ(x) only takes two possible values, we can specify a set A ∈ {ℵ}n, over which
φ(A) = 0 and the complementary set A∗ ∈ {ℵ}n, over which φ(A∗) = 1.

We can now specify the two types of error that can occur:

PF = Pr(φ(x = 1)|H0 is true ) = Pn0 (A∗), (3.3)

PM = Pr(φ(x = 0)|H1 is true ) = Pn1 (A). (3.4)
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Remark. The notation PF and PM comes from old radar terminology [117]. PF
means probability of a false alarm (i.e. a blip on the radar screen just being noise) and
PM means probability of a miss (i.e. there is a target but the radar did not detect it).

Ideally, we would like to minimise both PF and PM but normally there is a trade-
off. Sometimes the implications of a miss are more severe than a false alarm and the
probabilities are not as equally important to minimise. An example could be a cardiac
monitoring system at a hospital; an alarm signifying a cardiac arrest cannot be missed
but a rare false alarm is probably acceptable.

The optimum test between the two hypotheses is given by the Neyman-Pearson
lemma, given here without a proof.

Lemma 3.1 (Neyman-Pearson [24]): Let X1,X2, . . . , Xn be drawn i.i.d. according
to the mass functionQ. Consider the decision problem corresponding to the hypothe-
ses Q = P0 vs. Q = P1. For T ≥ 0 define a region

An(T ) =
{
P0(x1, x2, . . . , xn)
P1(x1, x2, . . . , xn)

> T

}
.

Let PF = Pn0 (A∗
n(T )) and PM = Pn1 (An(T )) be the probabilities of error corre-

sponding to the decision region An(T ). Let Bn be any other decision region with
associated probabilities of error PBF and PBM . If PBF ≤ PF then PBM ≥ PM . �

The Neyman-Pearson lemma tells us that the region An(T ), determined by the
likelihood ratio P0(x)

P1(x) ≥ T , is the one that (jointly) minimises PF and PM .
If we have symmetrical distributions of equal shape and would like to have the

probabilities of error PF and PM equally large, we should choose T = 1. When com-
puting the likelihood ratio for a large sample, both the numerator and the denominator
tend to become very small and if a computer is used we could run into serious numer-
ical problems. Recalling that Xi, 1 ≤ i ≤ n are assumed to be independent, we can
rewrite the test using a 2-logarithmic measure and T = 1 as

P0(x1, x2, . . . , xn)
P1(x1, x2, . . . , xn)

> 1,∏n
i=1 P0(xi)∏n
i=1 P1(xi)

> 1,

log2

(∏n
i=1 P0(xi)∏n
i=1 P1(xi)

)
> 0,

n∑
i=1

(
log2

P0(xi)
P1(xi)

)
> 0. (3.5)

In (3.5) we have a simple, computationally robust test, which is easy to implement and
tells us which of the two hypotheses H0 or H1 is the most likely. The ratio is called a
log-likelihood ratio, and the test is called a log-likelihood test.
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The Neyman-Pearson lemma tells us how to carry out the actual test given a sample
of size n. In addition, (3.3) and (3.4) state the two probabilities of error. We could
also try to estimate the number of samples that we need in order to achieve a certain
level of confidence in the test, i.e. how large n must be so that the overall probability
of error is smaller than a given value.

Assigning a priori probabilities to the two hypotheses, we can write the overall
probability of error as

Pe = π0PF + π1PM , (3.6)

where π0 is the prior probability of H0 and π1 is the prior probability of H1 and
π0 +π1 = 1. It can then be shown [24] that Pe is essentially equal to the larger of PF
and PM and the total error is given by

Pe = 2−nC(P0,P1), (3.7)

where C(P0, P1) is the Chernoff information

C(P0, P1) = − min
0≤λ≤1

log2

(∑
x∈ℵ

(P0(x))λ(P1(x))1−λ
)
, (3.8)

and n is the number of samples. The exact value of λ in (3.8) can be difficult to obtain,
but using e.g. λ = 0.5 we get an upper bound in (3.7) on the probability of error and
that is sufficient in many cases.

So, firstly we need to calculate the Chernoff information between P0 and P1 using
(3.8). Then we settle for an appropriate error probability Pe and from (3.7) we can
derive the required number of samples n needed.

Example 3.2: Consider the problem of determining if a random variable X is drawn
from a distribution Pε(X = 0) = 1

2 + ε or if X is uniform with PU (X = 0) = 1
2 .

Calculating the Chernoff information between Pε and PU using λ = 0.5 we get

C(Pε, PU ) ≥ − log2

(√
1
2

√
1
2

+ ε+

√
1
2

√
1
2
− ε

)

= − log2

(
1
2

√
1 + 2ε+

1
2

√
1 − 2ε

)
.

Using the Taylor expansion of
√

1 + x = 1 + x
2 − x2

8 for small x we get

C(Pε, PU ) ≈ − log2

(
1
2

(
1 +

2ε
2

− 4ε2

8

)
+

1
2

(
1 − 2ε

2
− 4ε2

8

))

= − log2

(
1 − ε2

2

)
≈ ε2

2 ln(2)
,
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where in the last approximation we have used the Taylor expansion of log2(1 + x) =
x/ ln(2) for small x. Thus, using Pe = 0.5 we need about n = 1.4/ε2 samples to
separate the two distributions. �

In Example 3.2 we have derived a well-known "rule of thumb", namely; To sepa-
rate the two binary distributions 1

2 + ε and 1
2 we need approximately 1/ε2 samples.

We have reviewed some of the fundamentals of hypothesis testing, and will now
return to the analysis of SOBER-t16 and SOBER-t32.

3.3 A distinguishing attack on SOBER-t16 without
stuttering

We start by analysing a version of SOBER-t16 where the stuttering unit has been
removed. In this scenario each NLF output word is taken as a running key word.
Thus we have zt = vt for all t ≥ 0. We also assume that we are given N words of the
output key stream, so we have access to z0, z1, . . . , zN−1.

The first step in our attack is to approximate the NLF-function with a linear
function and then argue that the noise introduced by the approximation possesses
a nonuniform distribution. Recall the expression for the NLF output

vt = ((st+1 � st+6 � f(st � st+16)) ⊕Konst) � st+13. (3.9)

We now approximate this function with a linear function by replacing � with ⊕,
and f by the identity map. When we do this approximation we introduce a noise (an
error), which is denoted by wt. We also incorporate the value of Konst into the noise
wt. Then

vt = st+1 ⊕ st+6 ⊕ st ⊕ st+16 ⊕ st+13 ⊕ wt, (3.10)

where wt, t ≥ 0 denotes a random variable that represents the error we get in the
approximation at each time t. The distribution of wt will be dependent on the value
Konst. However, wt will have the same distribution for all t, and this distribution is
denoted Ψ.

Introduce the notation Ωt = st ⊕ st+1 ⊕ st+6 ⊕ st+13 ⊕ st+16 for the xor of
the words from the LFSR that are inputs to the NLF function. We can then write the
output word vt as

vt = Ωt ⊕ wt. (3.11)

By looking at the running key at times t, t+4, t+15 and t+17 in combination with
(3.11) we can express zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt in the following way

zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt = vt+17 ⊕ αvt+15 ⊕ vt+4 ⊕ βvt

= (Ωt+17 ⊕ wt+17) ⊕ α(Ωt+15 ⊕ wt+15) ⊕ (Ωt+4 ⊕ wt+4) ⊕ β(Ωt ⊕ wt).
(3.12)
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3. Cryptanalysis of SOBER-t16 and SOBER-t32

Rearranging the terms on the right hand side of (3.12) we get

zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt = Ωt+17 ⊕ αΩt+15 ⊕ Ωt+4 ⊕ βΩt ⊕ (3.13)

wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt.

Then, recalling the linear recurrence relation for SOBER-t16

st+17 ⊕ αst+15 ⊕ st+4 ⊕ βst = 0, (3.14)

we see that Ωt+17 ⊕ αΩt+15 ⊕ Ωt+4 ⊕ βΩt = 0 and we can reduce (3.12) to

zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt, (3.15)

where the multiplications with α and β are in the extension field F2W .

Estimating the distribution of wt

The noise variables wt, t ≥ 0 are random variables taken from F216 with a nonuniform
but unknown distribution Ψ. Let us write the distribution Ψ in the form

Ψ =

⎡
⎢⎢⎢⎣
ψ0

ψ1
...
ψ216−1

⎤
⎥⎥⎥⎦ ,

where Pr(wt = x) = ψx. We cannot hope to find a closed expression for the
distribution Ψ, since it is computationally too complex to derive. However, we can
run the cipher and estimate the distribution Ψ.
In the simulations, we measure the frequency of different values for the noise wt,
calculated as

wt = (((st+1 � st+6 � f(st � st+16)) ⊕Konst) � st+13) ⊕ Ωt. (3.16)

Assume that we sample 2ν values of wt according to (3.16) by running the cipher, and
denote the measured frequencies by the vector Ψ̂ = (ψ̂0, ψ̂1, . . . , ψ̂216−1). Ψ̂ is an es-
timation of Ψ and we can write Ψ = Ψ̂+E, where E is a vector representing the error
in the estimation. Focusing on one single component of E, it will be approximately
Gaussian distributed with zero mean and a standard deviation of 2−(ν/2+8). Simula-
tions show that Ψ is quite nonuniform. For example, in simulation with Konst = 0
and ν = 38, the maximum value is 2−16 + 2−17.6. The error in this estimation is of
order 2−28. The distribution Ψ has been tabulated for a number of different values of
Konst.
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3.3 A distinguishing attack on SOBER-t16 without stuttering

Calculating the full noise distribution

Let us define

wFt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt. (3.17)

This means that wFt , t ≥ 0 are the random variables corresponding to the full noise
(superscript F for Full) that we can sample from the running key. Let the distribution
of wFt be ΨF with components

ΨF =

⎡
⎢⎢⎢⎣
ψF0
ψF1
...
ψF216−1

⎤
⎥⎥⎥⎦ .

That is, we have Pr(wFt = x) = ψFx .
In (3.17) we see that we must combine four Ψ distributions to get the overall noise

distribution, ΨF , and it is assumed that wt, t ≥ 0, are independent variables. Fur-
thermore, we make the distinct simplification that wFt , t ≥ 0, are also independent
variables.

The distribution Ψ′ = [ψ′
i] of the xor of two random variables with distribution

Ψ1 = [ψ1
i ] and Ψ2 = [ψ2

i ] respectively, is obtained by

ψ′
l =

∑
i⊕j=l

ψ1
iψ

2
j . (3.18)

The distribution of αwt is simply a permutation of the distribution Ψ. It can be
shown [4] that when combining distributions as done in (3.18), we sustain significance
in the resulting distribution. So by estimating the Ψ distribution by simulation and
then combining the probabilities according to (3.18), we can estimate the distribution
ΨF , of the right hand side of (3.15) for different values of Konst.

To be able to distinguish the full noise distribution, ΨF , from the uniform dis-
tribution (denoted PU ) we need have some N different keystream symbols. Let
z∗t = zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt, t = 0, . . . , N − 1. From (3.5) we know
that we need to test the log-likelihood ratio

N−1∑
t=0

log
(
ψFz∗t /2−16

)
> 0. (3.19)

Then from (3.7) we have the relationship between the probability of an incorrect de-
cision, denoted Pe, the number of required samples N , and the Chernoff informa-
tion. We fix the probability of error to Pe = 2−32 and we need to choose N ≥
32C(P1, P2)−1.
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3. Cryptanalysis of SOBER-t16 and SOBER-t32

Summarising the results

The distribution ΨF has been determined through simulation as previously described.
We summarise the results given in this section in the following attack.

Set f̂i = 0, i = 0 . . . 216 − 1.
For t = 1 . . . N do

(i) Calculate z∗t = zt+17 ⊕ αzt+15 ⊕ zt+4 ⊕ βzt.

(ii) Let f̂z∗t = f̂z∗t + 1.

end for.

Calculate I =
∑
x∈F216

f̂x log2

[
ψF

x

2−16

]
.

If I > 0 then output SOBER otherwise output random

We have calculated the combined ΨF distribution using 238(ν = 38) sampled
outputs to generate the Ψ distribution. Note that since Ψ (and thus ΨF ) is dependent
on the unknown value of Konst, we actually need to determine the ΨF distribution
for all 216 possible values of Konst.

The resulting Chernoff information between ΨF and the uniform distribution has
been derived for 50 random values of Konst, and were all between 2−84 and 2−87.
We assume that calculating the Chernoff information for other values of Konst will
give similar results. In the worst case, we need at least N = 32 · 287 = 292 words
from the running key to be able to distinguish a SOBER-t16 output sequence without
stuttering from a uniform distribution with a probability of error Pe = 2−32. The
computational complexity of the attack is roughly 292.

Finally, the Neyman-Pearson test must be performed for each of the 216 possible
values of Konst. Still, the probability of error is smaller than 2−16, which is small
enough. Note that this step does not change the overall complexity.

3.4 A distinguishing attack on SOBER-t16 with
stuttering

When the stuttering unit is present, not every NLF output is used to produce a key-
stream symbol. Recalling the functionality of the stuttering unit, we see that each vt
can be either discarded, used as a new SCW, or used (possibly xored with a constant)
as a keystream symbol zn. To be able to use the results from Section 3.3, we must have
access to the NLF output quadruple (vt, vt+4, vt+15, vt+17).
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3.4 A distinguishing attack on SOBER-t16 with stuttering

Assume that we look at one output symbol zn = C0⊕vt, where C0 ∈ {0, C,∼ C}
is the constant that is xored to vt in the stuttering unit to form zn. Simulations show
that the most probable position in the keystream for vt+4 to appear in is zn+2. Simi-
lar simulations to determine the most probable position for vt+15 and vt+17 give the
following results

Pr(C1 ⊕ vt+4 → zn+2|C0 ⊕ vt → zn) = 0.31,

P r(C2 ⊕ vt+15 → zn+7|C1 ⊕ vt+4 → zn+2) = 0.19,

P r(C3 ⊕ vt+17 → zn+8|C2 ⊕ vt+15 → zn+7) = 0.40.

Having established the most probable positions in the keystream for (vt+4, vt+15,
vt+17), given an output zn = C0 ⊕ vt, we are still faced with the problem of deter-
mining which constants Ci, i = 0, 1, 2, 3 each NLF output is xored with.

Denote by E the event that, given C0 ⊕ vt → zn, we have C1 ⊕ vt+4 → zn+2,
C2 ⊕ vt+15 → zn+7 and C3 ⊕ vt+17 → zn+8. The probability of event E , denoted p0,
is p0 ≈ 2−5.5.

By looking at Table 3.1 we note that certain combinations of (C0, C1, C2, C3) can-
not occur under the assumption E . In general, the distribution is nonuniform and for
example, the five combinations of (C0, C1, C2, C3) given by

(0, 0, 0, 0),
(C,C,C,∼ C),
(C,C,∼ C, 0),
(C,∼ C, 0, 0),
(∼ C, 0, 0, 0),

are more likely to occur than others.
From (3.12) and (3.15) in Section 3.3, we know that

vt+17 ⊕ αvt+15 ⊕ vt+4 ⊕ βvt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt. (3.20)

Given event E , we can write

zn+8 ⊕ αzn+7 ⊕ zn+2 ⊕ βzn = wFt ⊕ C3 ⊕ αC2 ⊕ C1 ⊕ βC0, (3.21)

where wFt = wt+17 ⊕ αwt+15 ⊕ wt+4 ⊕ βwt and has a known distribution, ΨF .
Again, we derive the distribution of the right hand side of (3.21) and denote this

distribution by ΨFC (superscript FC for Full with Constants). Assuming wFCt =
wFt ⊕ C3 ⊕ αC2 ⊕ C1 ⊕ βC0, we can derive ΨFC from ΨF by considering all pos-
sible combinations of (C0, C1, C2, C3) and their respective probability. The Chernoff
information between ΨFC and the uniform distribution PU is then calculated to be
C(ΨFC , PU ) ≈ 2−95.
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3. Cryptanalysis of SOBER-t16 and SOBER-t32

Sampling the keystream output sequence at (zn, zn+2, zn+7, zn+8) will give us a
sample of the noise from the distribution ΨFC with probability p0 = 2−5.5. With
probability (1 − p0) the assumption was wrong and it is reasonable to assume that we
then get a uniform distribution. Write the distribution ΨFC as a vector

ΨFC =

⎡
⎢⎢⎢⎣

2−16 + ξ0

2−16 + ξ1
...

2−16 + ξ216−1

⎤
⎥⎥⎥⎦ , (3.22)

where each element 2−16 + ξx represents Pr(wFCt = x) = 2−16 + ξx.

Let z∗n = zn+8 ⊕ αzn+7 ⊕ zn+2 ⊕ βzn. The distribution of z∗n, n ≥ 0, denoted
PZ∗ , can then be calculated to be

PZ∗ =

⎡
⎢⎢⎢⎣

2−16 + ξ0p0

2−16 + ξ1p0
...

2−16 + ξ216−1p0

⎤
⎥⎥⎥⎦ , (3.23)

i.e. we have Pr(Z∗ = z∗) = PZ∗(z∗). The resulting Chernoff information between
PZ∗ and the uniform distribution PU can be derived from the C(ΨFC , PU ) calcu-
lated in Section 3.3. We have PU (x) = 2−16, 0 ≤ x ≤ (2−16 − 1), and calculating
a lower bound on the Chernoff information by using λ = 0.5 (see (3.8)) we get

C(PZ∗ , PU ) = − log2

216−1∑
i=0

√
2−16 + ξip0

√
2−16

= − log2

∑
i

2−16

√
1 +

ξip0

2−16
. (3.24)

By the Taylor expansion of (3.24), similarly to the calculation in Example 3.2, it fol-
lows that C(PZ∗ , PU ) ≈ p2

0C(ΨFC , PU ) and hence, from the result in Section 3.3
for C(ΨFC , PU ), we conclude that we need at most N = 32 · p−2

0 295 ≈ 2111 key-
stream symbols to be able to distinguish the output of SOBER-t16 with stuttering
from a uniform source. The complexity is of the same size. We summarise the results
given in this section in the following attack.
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3.5 A distinguishing attack on SOBER-t32 without stuttering

Let f̂i = 0, i = 0 . . . 216 − 1.
For t = 1 . . . N do

(i) Calculate z∗n = zn+8 ⊕ αzn+7 ⊕ zn+2 ⊕ βzn.

(ii) Let f̂z∗n = f̂z∗n + 1.

end for.

Calculate I =
∑
x∈F216

f̂x log2

[
PZ∗ (x)

2−16

]
.

If I > 0, then output SOBER otherwise output random

Again, we should note that PZ∗ is dependent onKonst, and a full attack includes
testing against 216 different distributions.

3.5 A distinguishing attack on SOBER-t32 without
stuttering

The attack on SOBER-t16 was possible since we could compute the noise distribution
Ψ by simulation. From Ψ we could derive ΨF .

Obtaining significance in simulation was possible due to the small word size of
16 bits. In SOBER-t32 we cannot directly use the same method to obtain a simi-
lar distribution Ψ, due to computational limitations. We note, however, that if we
could simulate and find a noise distribution, then the attack on t32 would probably
be strong. This is due to the fact that the linear recurrence relation in t32 has only one
constant not equal to one, α, whereas t16 has two, α and β. The multiplications by
these constants tend to smooth out the distribution.

In this section we present another attack, based on a bitwise linear approximation
through the NLF function. Using the same notation as before, we denote the xor of
the input words to the NLF at time t, by Ωt = st⊕st+1 ⊕st+6 ⊕st+13 ⊕st+16. The
output from the NLF at time t, is denoted vt. Since the stuttering unit is removed,
we have zt = vt for all t ≥ 0. Each word is 32 bits and we will denote a specific bit i,
0 ≤ i ≤ 31, in a word x, with x[i]. Let k denote the value of Konst.

We start by considering the linear recurrence relation of t32 given by

st+17 ⊕ st+15 ⊕ st+4 ⊕ αst = 0, (3.25)

and the corresponding characteristic polynomial for the recurrence

x17 + x15 + x4 + α. (3.26)
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3. Cryptanalysis of SOBER-t16 and SOBER-t32

Repeated squaring of this polynomial will still yield a valid linear recurrence equation
for the considered linear recurrence of t32. Specifically, exponentiation with 232 gives

x17·232

+ x15·232

+ x4·232

+ α232

. (3.27)

Since α ∈ F232 we have α232
= α and addition of (3.26) and (3.27) gives

x17 + x15 + x4 + x17·232

+ x15·232

+ x4·232

. (3.28)

Here we can divide with x4, and the resulting linear recurrence is given by

st+17·232−4 ⊕ st+15·232−4 ⊕ st+4·232−4 ⊕ st+13 ⊕ st+11 ⊕ st = 0,

which is written

st+τ5 ⊕ st+τ4 ⊕ st+τ3 ⊕ st+τ2 ⊕ st+τ1 ⊕ st = 0, (3.29)

by introducing the constants τ1 = 11, τ2 = 13, τ3 = 4 · 232 − 4, τ4 = 15 · 232 − 4
and τ5 = 7 · 232 − 4. Note that in (3.29) we have derived a linear recurrence equation
that holds for each single bit position.

Consider the xor between two adjacent bits, i and i−1, i ≥ 1, in the running key
zt. As before, we use a linear approximation of the NLF function, zt = Ωt⊕wt, where
the value of Konst is incorporated into the binary random variable wt representing
the noise. We can now write

zt[i] ⊕ zt[i− 1] = Ωt[i] ⊕ Ωt[i− 1] ⊕ wt[i] ⊕ wt[i− 1], (3.30)

where wt[i] denotes the noise in bit position i introduced by the linear approximation.
Let ΨB [i] (superscript B for bit) be the distribution of wt[i] ⊕ wt[i− 1]. We can es-
timate the distribution ΨB [i] by simulation and the result shows that the distribution
is quite nonuniform for many positions of 1 ≤ i ≤ 31. We can write the correlation
between the xor of bit i and i− 1 of the input and output as

Pr(zt[i] ⊕ zt[i− 1] = Ωt[i] ⊕ Ωt[i− 1]) =

Pr(ΨB [i] = 0) =
1
2

+ εi, (3.31)

for each bit position 1 < i ≤ 31.
The largest correlation we have found is for the xor of bit 29 and bit 30 (i.e.

ΨB [30]) in the input and output words. Simulations with 230 samples for 100 random
values of k, indicate that the correlation in (3.31) for i = 30 is only dependent on the
two corresponding bits in k, i.e. k[30] and k[29]. We have the following result

ε30 ≈

⎧⎪⎪⎨
⎪⎪⎩

−0.0086 if k[30] = 0 and k[29] = 0,
−0.0052 if k[30] = 1 and k[29] = 1,
+0.0086 if k[30] = 1 and k[29] = 0,
+0.0052 if k[30] = 0 and k[29] = 1.

(3.32)
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3.5 A distinguishing attack on SOBER-t32 without stuttering

Now, given a keystream output, z0, z1, . . . , zN−1, of length N , we can use the
linear recurrence relation (3.29) to calculate

zt+τ5⊕zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt =
Ωt+τ5 ⊕ wt+τ5 ⊕ Ωt+τ4 ⊕ wt+τ4 ⊕ Ωt+τ3 ⊕ wt+τ3⊕
Ωt+τ2 ⊕ wt+τ2 ⊕ Ωt+τ1 ⊕ wt+τ1 ⊕ Ωt ⊕ wt (3.33)

where the sum of all the Ωj terms will equal zero as a result of (3.29). Thus, we have

zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt =
5⊕
j=0

wt+τj
. (3.34)

Introduce the notation z∗t = zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt for the left
hand side of (3.34), and wFt =

⊕5
j=0 wt+τj

for the right hand side. We can calculate
the probability that

Pr(z∗t [i] ⊕ z∗t [i− 1] = 0) =

Pr(wFt [i] ⊕ wFt [i− 1] = 0) =
1
2

+ 25ε6
i , (3.35)

where the last equality comes from combining the six independent noise distributions
ΨB , each with probability 1/2 + εi of being zero.

Recalling the measured correlation for bits 29 ⊕ 30 from (3.32), we see that ε30

takes four possible values. If we want to distinguish the distribution of w from a
uniform source, the worst case occurs when ε30 takes the smallest value. Thus, using
ε30 = 0.0052 and combining the six noise distributions according to (3.35) we derive
the final correlation probability for the six independent keystream positions as

p0 = Pr(z∗t [i] ⊕ z∗t [i− 1] = 0) =
1
2

+ 25(0.0052)6 ≈ 1
2

+ 2−40.5. (3.36)

Summarising the results

To be able to distinguish this nonuniform distribution, denoted P0, from a uniform
source, denoted PU , we again calculate the Chernoff information between the two
distributions as

C(P0, PU ) = − min
0≤λ≤1

log2

∑
x

Pλ0 (x)P 1−λ
U (x) ≈ 2−81.5. (3.37)

Settling for an error probability of Pe = 2−32 we see that we need N = 286.5 sam-
ples from the keystream. Each sample spans a distance of τ5 = 17 · 232 − 4 ≈ 236

positions, so in total, we need N + τ5 ≤ 287 keystream output words to distinguish
an output sequence from SOBER-t32 without stuttering unit from a uniform source.
We summarise the results given in this section in the following attack.
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3. Cryptanalysis of SOBER-t16 and SOBER-t32

Let f̂ = 0.
For t = 1 . . . N do

(i) Calculate z∗t = zt+τ5 ⊕ zt+τ4 ⊕ zt+τ3 ⊕ zt+τ2 ⊕ zt+τ1 ⊕ zt.

(ii) Let f̂ = f̂ + (1 − (z∗t [i] ⊕ z∗t [i− 1])).

end for.
Calculate I = f̂ log2

[
1
2 +2−40.5

1/2

]
+ (N − f̂) log2

[
1
2 −2−40.5

1/2

]
.

If I > 0, then output SOBER otherwise output random

3.6 Related results on SOBER-t32 with stuttering

An obvious extension of the attack in the previous section would be to guess the most
probable keystream positions for vt+τ1 , . . . , vt+τ5 , given zn = vt. For vt+τ1 , simu-
lations show that the most probable position in the keystream is zn+6, and that this
event occurs with probability 0.217. Similarly, the most probable position for vt+τ2 is
zn+7 and the probability of this event is 0.198. But, since τ3, τ4, τ5 are all in the order
of 232, the probability of guessing the positions of vt+τ3 , . . . , vt+τ5 in the output will
be very small, but will still give an attack which is better than an exhaustive key search.
This approach has been exploited in a paper by Babbage et al. [4]. They derive the
probability that the NLF output vt, at time t, appears at its most probable position as

Pr(vt →
n− ⌊

n
25

⌋
2

) =
λ√
8πn
25

, (3.38)

where λ is a constant determined by simulation to be λ ≈ 0.84. The expression for
the most probable position is determined by the fact that on average every 25th word
coming from the NLF is a SCW and thus removed from the possible output words.
Then, of all the remaining words, half of them are expected to be output as keystream
material, and the other half are expected to be discarded.

Now the probability that vt+τ3 , . . . , vt+τ5 appears at its most probable position in
the keystream can be calculated using (3.38). That, together with the simulated prob-
abilities for the mappings vt+τ1 → zn+6 and vt+τ2 → zn+7 gives a total probability
p0, that each of vt+τi

, i = 1, . . . , 5 are at their most probable positions, of

p0 = 0.217 · 0.198 · 2−17.3 · 2−18.0 · 2−16.8 = 2−56.6. (3.39)

Using the value obtained in (3.37) together with (3.39) they calculate the Chernoff
information between the distribution of the stuttered output PY and the uniform
distribution to be

C(PY , PU ) ≈ p2
0C(P0, PU ) = 22·−56.6 · 2−81.5 = 2−194.7, (3.40)
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3.7 Summary

where P0 is the distribution from (3.37). The total attack needs about 32 ·2194.7 +17 ·
232 < 2200 words of keystream output and about the same computational complexity.

In the same paper [4], Babbage et al. also give estimates on how efficient the attack
presented in Section 3.4 on full SOBER-t16 with stuttering would be, if extended to
full SOBER-t32. This approach gives an estimated data complexity of 2153 required
words and a similar computational complexity.

3.7 Summary

In this chapter we have considered the stream ciphers SOBER-t16 and SOBER-t32.
We have derived a distinguishing attack on SOBER-t16 with and without a stuttering
unit, based on a linear approximation of the NLF function. We can distinguish the
output sequence from a random source using at most 292 keystream words and with
the same time complexity in the case of no stuttering. For full SOBER-t16 we can
distinguishing it using at most 2111 keystream words and the same time complexity.

For SOBER-t32 without the stuttering unit we can, due to a fairly strong bit
correlation in the NLF function, distinguish the output from a random source using
287 keystream output words and the same time complexity. Results from [4] show that
the full SOBER-t32 can be distinguished using at most 2153 keystream symbols and
the same time complexity.

We have also reviewed some fundamentals of hypothesis testing, including the
Neyman-Pearson lemma and Chernoff information.
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4
Cryptanalysis of A5/1

The stream cipher A5/1 is the strong version of the encryption algorithm used in
the GSM standard to provide privacy for more than 130 million customers in the

air link of their voice and data communication. GSM is designed to work seamlessly
over national borders and different network operators. This fact, together with the
cryptography services provided, makes GSM one of the first major international cryp-
tographical challenges. The history of GSM began in the early 1980’s, when a greater
variety of analog mobile telephone systems were being used to a much larger extent
by the public, and the problems of inter-operability and demand were becoming more
apparent. Imagine a car, speeding down the Autobahn in Germany, that suddenly
stops dead when crossing the border to France. This was almost the situation in the
early 1980’s for mobile telecom users. The leading telecom companies focused solely
on local national networks and were blind to the increasing international business.

In 1985 the GSM project was launched with support from the European Com-
mission with the aim of providing a digital system. The development in Very Large
Scale Integrated (VLSI) circuits promised a future with small hand-held mobile de-
vices, even though the first phones seemed to target body-building customers only, in
terms of size and weight. In 1987 most of the details were finalised, and the launch
year for a limited set of services was set for 1991, followed by a coverage of the major
European cities in 1993.

The attack presented in this chapter targets the cipher A5/1 used for encrypting
the voice and data over GSM. The attack is based on a bad initialisation of the cipher;
the fact that the key and the frame counter are initialised in a linear fashion. This “bad
property” enables us to launch a kind of correlation attack, which is quite powerful.

As opposed to all other attacks presented so far, this attack is (almost) independent
of the shift register lengths. Instead, it depends on the number of times that the cipher
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is clocked before it starts producing the output bits. In A5/1 this number is 100.
If this number is increased, the attack becomes weaker and vice versa. The resulting
attack recovers the initial state ofA5/1 in a few minutes without requiring any notable
pre-computation and without extensive memory requirements. The results in this
chapter were originally presented in [31, 34].

The chapter is organised as follows. In Section 4.1 we first present how security
is maintained in GSM, including the authentication of the mobile device and the
computation of the secret encryption key. Next, we give a more detailed description
of the stream cipher A5/1 in Section 4.2. Some related work on A5/1 is presented in
Section 4.3 and the basis of our attack is presented in Section 4.4. In Section 4.5 we
give a refined attack and show some simulation results from the attack in Section 4.6.
The chapter is concluded with a summary in Section 4.7.

4.1 An overview of the security management in GSM

In this section we will present a general overview of the security management in GSM.
We will focus on the authentication procedure and on how the encryption key for the
stream cipher, responsible for the encryption of both voice and data, is derived. All air
link security in GSM stems from a single secret key, the Subscriber Authentication Key
Ki, fixed (but individual) for each user. This key is a 128 bit number stored only in
the Subscriber Identity Module (the SIM card) of the user and in the Home Location
Register (HLR) of the network operator. The SIM card is the small plastic card each
user plugs into their phone. This SIM also contains the user’s International Mobile
Subscriber Identity (IMSI), which uniquely identifies each user. The IMSI is linked
with the user’s phone number and used for billing purposes. Thus, a user can change
the physical phone, but continue using the same SIM card and have the same phone
number as previously. The International Mobile Equipment Identity (IMEI) identifies
the Mobile Equipment (ME) to confirm it is allowed to operate within the network.
The physical phone, together with the SIM card, constitute a Mobile Station (MS).

Figure 4.1 shows a schematic picture of the GSM network architecture. The MS
communicates over the air with the Base Transceiver Station (BTS). Each BTS covers
a geographical area called a cell, and serves all mobile phones within that cell (if they
are allowed on the operator network). The BTS forwards the call via the Base Station
Controller (BSC) to the network backbone and particularly to the Mobile Switching
Controller (MSC). The MSC controls the traffic among several cells and serves as an
interface to the regular public switched telephone network.
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A3 The algorithm used to produce the
SRES. Resides on the SIM and in the
AuC.

A5 The algorithm used to encrypt voice
and data over the GSM air link. Re-
sides in the ME. There are various dif-
ferent implementations; A5/0 which is
no encryption at all, A5/1 which is
the strong version, and A5/2 which is
the weaker version, targeting the market
outside Europe.

A8 The algorithm used to produce the ses-
sion key Kc. Resides on the SIM and
in the AuC.

AuC The Authentication Centre. Generates
the RAND and computes the correct
SRES and the session keyKc.

BSC The Base Station Controller. The com-
mon node between several BTSs and the
MSC.

BTS The Base Transceiver Station, a base sta-
tion with which the MS communicates.

HLR The Home Location Register. A
database that stores the secret key for
each user.

IMEI International Mobile Equipment Iden-
tity. Uniquely identifies the ME.

IMSI International Mobile Subscriber Iden-
tity. Uniquely identifies the user and
binds them to their phone number and
billing address.

Kc The 64 bit session key. Used for en-
crypting the voice and data in the A5
algorithm.

Ki The 128 bit secret key shared between
the SIM and the HLR of the home net-
work.

ME The Mobile Equipment. The phone or
the computer.

MS The Mobile Station, i.e. the ME and the
SIM.

MSC The Mobile Switching Centre. Provides
access to other networks and the PSTN.

PSTN The Public Switch Telephone Network. RAND A 128 bit random number generated in
the AuC.

SIM Subscriber Identity Module. Contains
the secret key Ki, the IMSI and the al-
gorithms A3 and A8.

SRES The Signed Response. The result of ap-
plying the A3 algorithm to RAND
andKi.

VLR The Visitor Location Register. Stores
C/R triples for MSs that are visiting the
network.

Table 4.1: Explanation of frequently used acronyms.

Authenticating the mobile station

When a user powers up their phone (or MS), it starts transmitting a call signal to at-
tempt to communicate with a BTS. The MS identifies itself by its IMSI1 and IMEI.
The BSC for the area contacts the MSC and asks for a challenge/response triple
(RAND,SRES,Kc) for user IMSI using a ME with identification IMEI. The num-
ber RAND is a 128 bit random number used to challenge the MS. The number
SRES is the correct answer to the challenge, used to check the response from the
MS, and Kc is the session key, later to be used in the encryption of the voice data.

We will return to what the MSC needs to do to generate the triple, and for a
moment assume that it simply sends back an answer to the BSC. When the BSC has
received the triple, it sends the random number RAND to the MS, and challenges
the MS to calculate a response. The purpose of this challenge/response scheme is to

1Normally the IMSI is only sent the very first time the SIM is used. After that, a frequently altered,
temporary number is used to protect the identity of the user to eavesdroppers.
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SIM

Mobile
Station

BTS

BTS

BSC

VLREIR HLRAuC

Base Station
Subsystem

MSC

Other Base 
Station Subsystem

Public Switched
Telephone Network

Network Subsystem

The world of GSM is an odyssey in TLAs.

ME : Mobile Equipment.
SIM : Subscriber Identity Module.
BTS : Base Transceiver Station.
BSC : Base Station Controller.
MSC : Mobile Switching Station.

ME

VLR: Visitor Location Register.
AuC : Authentication Centre.
EIR : Equipment Identity Register.
HLR : Home Location Register.
TLA : Three Letter Acronym.

IMSI identifies user.
IMEI identifies ME.

Figure 4.1: GSM network architecture.

authenticate the MS to the network, i.e. the network should be certain that the MS is
a legitimate device. The important point from a security perspective, is to verify that
the MS has the correct secret key Ki.

In calculating the response, the MS takes the received random number RAND
and its secret key Ki and uses those values as input to a function called A3, see Fig-
ure 4.2. The output SRES′, calculated by the MS, is then sent back to the BSC,
which compares it to the correct answer, given by the MSC, i.e. the BSC checks if
SRES′ = SRES. If the response is correct, the MS has authenticated itself to
the network and is allowed to operate within the network. The steps are pictured in
Figure 4.3.

We now return to the MSC and the procedure for obtaining the challenge/response
triple. Firstly, the MSC consults the Equipment Identity Register (EIR), which is
a database of IMEI values. In this database there are three lists maintained by the
operator; the white list, the grey list, and the black list. The white list contains all the
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Ki (128 bits), RAND (128 bits)

SRES′ (32 bits)A3

Figure 4.2: Signed response (SRES) calculation.

MS BSC MSC(1) Sends IMSI
and IMEI.

(2) Requests C/R
triple for user 
IMSI, IMEI.

(3) Sends

(4) Challenges with 

(5) Responds with

(6) BSC checks if

(RAND,SRES,Ki).

RAND.

SRES′.

SRES′ = SRES

Figure 4.3: Flowchart for the challenge/response scheme used in authenti-
cating the MS.

IMEI numbers of the MEs that are allowed to operate within the network. The grey
list contains the IMEI of the MEs that are under observation for possible problems,
and the black list contains the IMEI of the MEs that are prohibited to operate within
the network. A black listed ME could, for example, be a stolen phone or a cloned
phone.

After the equipment is verified the MSC proceeds to verify the user (the IMSI).
Now, if the MS is operating in its home network, the MSC has all the information
about the user stored in a database called the Home Location Register (HLR) and the
MSC consults the HLR for the user’s secret key, Ki. The HLR forwards the request to
the Authentication Centre (AuC), which generates a 128 bit random numberRAND,
and inputs RAND and Ki to the A3 algorithm, as shown in Figure 4.2. The result
from the calculations inA3 is the true answer to the challenge, SRES. The AuC now
also computes the last item in the triple, the session key Kc, which is explained below.
The final step for the AuC is to return the computed triple to the HLR, which then
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forwards it to the MSC.
If a user is trying to operate in another network than their home network, that

visited network has no information on that user’s secret key, and needs to contact the
home network of the user to retrieve that information. The home network does not
send the secret key to the visited network, but performs the challenge/response triple
computation itself and sends the triple to the visited network. This information is
stored in the Visitor Location Register (VLR) in the visited network. The VLR acts as
a combination of the HLR and the AuC for the MSC in the visited network.

Calculation of the session key Kc

The session key, Kc, is the key used for the encryption of the voice and data in GSM.
It is also derived through the challenge/response scheme employed during authenti-
cation, and is changed only when the network decides to re-authenticate a user. The
network operator can control how often the user is to be authenticated. From a secu-
rity perspective, one would like the user to be authenticated before each call, but that
increases the signalling load in the network and lengthens the call setup time.

To generate the session key, both the MS and the AuC execute an algorithm
called A8. The inputs to A8 are the random number RAND (used in the chal-
lenge/response) and the secret key Ki, see Figure 4.4. The output from A8 is the 64
bit session key Kc used for encryption2.

Ki (128 bits), RAND (128 bits)

Kc (64 bits)A8

Figure 4.4: Session key (Kc) calculation.

An interesting fact is that neither of the algorithms, A3 or A8, are specified in the
GSM standard. Only the input and output of the algorithms are specified, but exactly
how the calculations are done is up to the network operator. The algorithms both
reside, and are executed, on the SIM card in the MS, making it easy for the network
operator to issue SIM cards with their own algorithms. In the AuC it is easy for the
operator to implement any algorithms of their choice.

Even though the algorithms A3 and A8 are operator specific, almost all opera-
tors have initially chosen an algorithm called COMP128 for both the A3 and the A8
functions. The COMP128 algorithm can produce both the SRES and the Kc in

2However, frequently in the past the last 10 bits of Kc were set to zero, making the effective key size
only 54 bits.
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one execution, which saves memory and execution time in the SIM card. However,
the COMP128 algorithm has been broken [11], and if an attacker can get physical ac-
cess to the SIM card, and mounts a chosen-plaintext attack on the challenge/response
scheme, she can recover the secret key Ki in a couple of hours using a SIM card reader
connected to an ordinary PC. The implications are that an attacker can clone a user’s
SIM card and have all phone bills paid by someone else.

The derived session key is then used in the encryption algorithmA5, which is actu-
ally a family of ciphers. The first, A5/0, is a dummy cipher, providing no encryption.
This version allows the network operator to force the communication into plaintext.
The next version, A5/1, is the strong version of the algorithm, employed in most
operator networks. This will be attacked in this chapter. There is also a weaker ver-
sion, A5/2, originally intended for a non-Western market. The reason to also specify
a weaker algorithm was that the export restrictions on strong cryptographical devices
and algorithms were much tougher 15 years ago, and European governments did not
want to provide certain countries with strong encryption algorithms. Recently, a new
version of the cipher called A5/3 was introduced, which is an even stronger version
than A5/1.

The designs of A5/1 and A5/2 were initially kept secret from public scrutiny, but
a sketch of the design ofA5/1 was leaked in 1994 [1], and the exact design was reverse
engineered in 1999 by Briceno el al. [12] from an actual GSM telephone. The design
was later confirmed by the telecom industry. Both A5/1 and A5/2 are stream ciphers
based on irregular clocking of three linear feedback shift registers. The keystream is
produced by xoring the output from the three registers. The difference between A5/1
and A5/2 is the length of the LFSRs and the size of the key, as previously stated.
The development of A5/3 has been public from the start, and the recently decided
standard is a stream cipher based on a block cipher called Kasumi.

We will now focus on the strong version, A5/1, and give a detailed description of
the cipher and the inadequate initialisation procedure enabling our attack.

4.2 A description of A5/1

A GSM conversation is sent as a sequence of frames, where one frame is sent every 4.6
milliseconds. Each frame contains 114 bits representing the communication from the
MS to the BTS, and another 114 bits representing the return communication. Each
conversation is encrypted by the session key Kc. For each frame to be sent, the session
key Kc is mixed with a publicly known frame counter, denoted Fn, where n indicates
different frames, and the result serves as the initial states of the shift registers in the
A5/1 generator. The generator then produces 228 bits of keystream, which are xored
with the 228 bits of plaintext to produce the ciphertext.

A5/1 consists of three short binary LFSRs of lengths 19, 22, 23, denoted by R1,
R2, R3, respectively. These three LFSRs all have primitive feedback polynomials. The
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Condition Registers clocked

C1 = C2 = C3 ⊕ 1 R1 R2
C1 = C2 ⊕ 1 = C3 R1 R3
C1 ⊕ 1 = C2 = C3 R2 R3
C1 = C2 = C3 R1 R2 R3

Table 4.2: The different clocking tap conditions and corresponding registers
that are clocked.

keystream of A5/1 is given as the xor of the output of the three LFSRs, as illustrated
in Figure 4.5.

0 107 20 22

0 10 2120

0 8 13 16 17 18

Clocking tap C1

Clocking tap C2

21

Clocking tap C3

Keystream

Clocking tap C1

Clocking tap C2

Clocking tap C3

Clock
controlling

circuit

R1 clocking control

R2 clocking control

R3 clocking control

Figure 4.5: Schematic description of A5/1.

The LFSRs are clocked in an irregular fashion. It is a type of stop/go clocking
with a majority rule as follows. Each register has a certain clocking tap, denoted C1,
C2, C3, respectively. Each time the LFSRs are to be clocked, the three clocking taps
C1, C2, C3 determine which of the LFSRs that are clocked according to Table 4.2.
Note that at each step at least two LFSRs are clocked, and that the probability of an
individual LFSR being clocked is 3/4.

Finally, we describe the key initialisation. Firstly, the LFSRs are initialised to zero.
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They are then all clocked 64 times, ignoring the irregular clocking, and the key bits of
Kc are consecutively xored in parallel to the feedback of each of the registers.

In the second step the LFSRs are clocked 22 times, ignoring the irregular clocking,
and the successive bits from Fn are again xored in parallel to the feedback of each of
the registers. Let us call the contents of the LFSRs at this time the initial state of the
frame.

In the third step, the three registers are clocked for 100 additional clock cycles
with the irregular clocking, but ignoring the output. Then finally, the three registers
are clocked for 228 additional clock cycles with the irregular clocking, producing the
228 bits that form the keystream. As A5/1 is an additive stream cipher, the keystream
is xored to the plaintext to form the ciphertext. We denote the keystream output by
z = z1, z2, . . . , z228.

The proposed attack is a known-plaintext attack, and since the digital represen-
tation of the conversation is split into frames of length 228 bits, the corresponding
known-plaintext assumption is now that the attacker is given access to the keystream
from m different frames, each keystream of length 228 bits. Note that the LFSRs
for each frame are initialised with the same session key Kc but with different frame
counters Fn.

Given the keystream, the goal of the proposed attack is to recover the initial state
of the keystream generator. In the case of the GSM system the initial state of the shift
registers is a linear combination of the publicly known frame counter and the secret
session key. By deducing the initial state, the secret session key Kc can be recovered.

4.3 Related work

As stated previously, the exact design of the A5/1 algorithm was secret until 1999,
so the early analysis on the cipher was done on an alleged version. An erroneous
description of the cipher arrived anonymously to a research group in Cambridge in
1994, and Anderson and Roe [1] then described a simple guess-and-determine attack
involving guessing the initial states of registers R1 and R2, then deriving the contents
of register R3 using the observed keystream. The initial estimate of the complexity was
241, but later altered to approximately 245, since the contents of R3 cannot be directly
obtained and additional guessing is required.

In 1997, Golić [48] described two attacks on the alleged A5/1. The first is an
attack based on solving systems of linear equations and requires about 240 operations,
where each operation involves finding a solution to a system of linear equations. The
attack, however, needs only 64 bits of keystream material for setting up the equation
systems and verification. The second attack is a general trade-off attack on stream ci-
phers (which was independently published by Babbage [3]). This time-memory trade-
off attack can find the initial state of the cipher using a pre-computed table of 242 128
bit entries, and probing the table with about 222 queries during the active phase of the

69



4. Cryptanalysis of A5/1

attack.
In 2000, Biryukov, Shamir, and Wagner [8] refined the time-memory trade-off

ideas of Golić to a very impressive level. They present two attacks, both based on highly
optimised and cipher specific search algorithms. The first, called the biased birthday
attack, considers special 16 bits patterns in the keystream and stores their initial state
on a hard disk. Whenever the attacker then sees the specific pattern in the keystream,
she can perform a lookup on the correct initial state. The attack reduces the original
complexity of the attack by Golić by observing that some of the subsequences where
the special 16 bit pattern are occurring are more likely to appear in the keystream
of A5/1 then others (in fact, some subsequences are not possible at all). By only
storing a fraction of the data, but still having a large possibility of occurrence, their first
attack needs approximately 248 operations in pre-computation time, 150 gigabytes of
storage, roughly 2 minutes of known plaintext and 1 second of active attack time. The
second attack in [8], called the random subgraph attack, reduces the required observed
keystream to about 2 seconds of known plaintext at the cost of increased storage (about
300 gigabytes) and the active attack time is 2–3 minutes.

Also in 2000, Biham and Dunkelman [6] presented a guess-and-determine attack,
combined with some additional table lookup. The attack starts by assuming a position
in the keystream in which the third register R3 is not clocked for 10 clockings. Then
they guess 12 bits and can recover the content of both R1 and R2. To recover the bits
in R3, they build a table indexed by some bits in the output stream and the (partial)
contents in R1 and R2. The entries in the tables are the possible values of the bits
in R3 which generated the output. Some additional observations and tricks reduce
the time complexity to 239.91 A5/1 clockings with 220.8 bits of known plaintext. The
pre-computational requirements are 238 operations with 32 gigabytes of memory. A
second version increases the time complexity of the attack to 240.97, while gaining in
pre-computation time (233.6) and memory (2 gigabytes).

Very recently, Barkan, Biham and Keller [5] presented a collection of attacks on
A5/2, including a ciphertext only attack. The attack is based on the highly redundant
error-correcting code employed during call set up, together with a weakness in the pro-
tocol during set up. With their attack, the session key can be recovered in one second
using a regular PC. If a fraudulent base station is used, they note that an attacker can
force the MS into using A5/2 and then recover the session key. When the MS later
contacts the original operator network and switches cipher to the stronger A5/1, the
session key is not necessarily changed and subsequent calls can easily be decrypted.

All the previous attacks on A5/1 are based on a time-memory trade-off, and are
exponentially expensive in the length of the shift registers. Thus, if the lengths were
increased, say by a factor of 2, the above attacks would become impractical. A new
approach will now be presented, where the crucial parameter is the number of premix
clockings rather than the length of the shift registers.
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4.4 A basic correlation attack

Let us start by presenting some fundamental observations. Firstly, from the key ini-
tialisation description we note that the initial state is a linear function of Kc and Fn.
Let Kc = (k1, k2, . . . , k64) and Fn = (f1, f2, . . . , f22), where ki, fi ∈ F2. Let
u1

0, u
1
1, . . . be the LFSR output sequence produced by regular clocking of R1 after

the key and frame number initialisation (starting with the initial state). Similarly, let
u2

0, u
2
1, . . . be the LFSR output sequence produced by regular clocking of R2, and fi-

nally, let u3
0, u

3
1, . . . be the LFSR output sequence of R3 when clocked regularly. This

means that (u1
0, u

1
1, . . . , u

1
18) forms the initial state of R1 for the given frame and

similarly for R2 and R3.
Recall from Section 4.2 the linear fashion in which the key Kc and the frame

number Fn together form the initial state of the frame. Given this observation, we can
write each LFSR output symbol from R1 as

u1
t =

64∑
i=1

c1
itki ⊕

22∑
i=1

d1
itfi, (4.1)

for some known binary constants c1
it, i = 1, . . . , 64, t ≥ 0, and d1

it, i = 1, . . . , 22,
t ≥ 0. We introduce the notation s1

t =
∑64
i=1 c

1
itki and f̂ 1

t =
∑22
i=1 d

1
itfi, t ≥ 0.

Then we can write
u1
t = s1

t + f̂ 1
t , t ≥ 0. (4.2)

We call the sequence s1
t the key part of sequence u1

t and the sequence f̂ 1
t is called the

frame number part of u1
t . Of course, we can also write

s1
t =

18∑
i=0

ĉ1
its

1
i , (4.3)

for some known binary constants ĉ1
it, i = 0, . . . , 18, t ≥ 0.

Note that s1
0, s

1
1, s

1
2, . . . is an unknown binary sequence (219 possible sequences)

that remains the same for all frames within a conversation (it depends only on Kc,
which is fixed during a conversation). Furthermore, f̂ 1

1 , f̂
1
2 , . . . , is a known contribu-

tion from the frame counter that differs for each frame. Since the frame number is
always known, the above sequence f̂ 1

1 , f̂
1
2 , . . . , can be calculated for each frame. For

registers R2 and R3 we can, in a similar way, write the output symbols as

u2
t =

64∑
i=1

c2
itki +

22∑
i=1

d2
itfi, (4.4)

u3
t =

64∑
i=1

c3
itki +

22∑
i=1

d3
itfi, (4.5)
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with known binary constants c2
it, c

3
it, i = 1, . . . , 64, t ≥ 0 and d2

it, d
3
it, i = 1, . . . , 22,

t ≥ 0. Following the notation for R1, we introduce

s2
t =

64∑
i=1

c2
itki, and f̂ 2

t =
22∑
i=1

d2
itfi, t ≥ 0,

s3
t =

64∑
i=1

c3
itki, and f̂ 3

t =
22∑
i=1

d3
itfi, t ≥ 0,

for the key part and frame number part of the output sequences u2
t and u3

t of registers
R2 and R3. Similarly to (4.2) we also write

u2
t = s2

t + f̂ 2
t , t ≥ 0, (4.6)

u3
t = s3

t + f̂ 3
t , t ≥ 0. (4.7)

Let us now present the very basic idea for a correlation attack on A5/1. It will
later be considerably refined. Let z1, z2, . . . , z228 denote the observed keystream from
A5/1 in a certain frame. Let us consider what happens after the LFSRs have received
their initial values. Firstly, the registers are clocked irregularly 100 times, producing
no output, then they are clocked once and the first output symbol is produced. Since
each of the shift registers will clock on average three times out of four, we can expect
that after 101 irregular clockings, each LFSR will have been clocked about 76 times.
Assume for a moment that each of the three LFSRs has been clocked exactly 76 times.
Then the produced bit z1 is the xor of the output of the three LFSRs

u1
76 + u2

76 + u3
76 = z1. (4.8)

Since f̂1, f̂2, . . . is a known quantity in each frame, we can simply calculate its contri-
bution to the output bit. From (4.2), (4.6) and (4.7) we can rewrite (4.8) as

s1
76 + s2

76 + s3
76 = f̂ 1

76 + f̂ 2
76 + f̂ 3

76 + z1. (4.9)

Note that the right hand side of (4.9) contains known quantities only. Denote the
right hand side of (4.9) in frame j with Oj(76,76,76,1). Under the assumption that each
LFSR has been clocked exactly 76 times, we get one bit of information about the key
in frame j, since

s1
76 + s2

76 + s3
76 = Oj(76,76,76,1). (4.10)

Of course, if the assumption is incorrect we can expect (4.10) to hold with probability
1/2. Hence, we have identified a correlation by calculating

P (s1
76 + s2

76 + s3
76 = Oj(76,76,76,1)) = P (assumption correct) · 1

+ P (assumption incorrect) · 1/2. (4.11)
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In this case the probability of all three LFSRs being clocked exactly 76 times is calcu-
lated to be about 10−3. Hence

P (s1
76 + s2

76 + s3
76 = Oj(76,76,76,1)) = 1/2 + 1/2 · 10−3. (4.12)

The left-hand-side of (4.10), s1
76 + s2

76 + s3
76, remains constant over all frames. It is

not hard to show that if we have access to a few million frames and thus can calcu-
late Oj(76,76,76,1) for each frame, then s1

76 + s2
76 + s3

76 can be determined with high
confidence.

The value of s1
76 + s2

76 + s3
76 gives us one bit of information about the key. By

considering other assumed triples for the number of clockings of the three LFSRs, we
can derive more information about the key and eventually recover it.

4.5 A refinement of the attack

The previously described attack is very simple, but has the drawback that it requires
many frames. In this section we show how to refine the attack.

Denote the produced keystream after the initialisation with the key Kc and the
frame counter Fn byw0, w1, . . . , w328. Recall that the first 101 symbols, w0, w1, . . . ,
w100 are discarded during the initialisation and the keystream zi is given by z1 =
w101, z2 = w102, . . . , z228 = w328. Consider a certain assumed clocking triple
(cl1, cl2, cl3) of registers R1, R2 and R3. This clocking might occur in several key-
stream positions, e.g. the clocking (79,79,79) might not only appear at position 101
but also at positions 102, 103, ..., et cetera. Keystream positions before 101 are not
considered since they are discarded and are not accessible. Let

P ((cl1, cl2, cl3) in vth position), (4.13)

denote the probability of clocking (cl1, cl2, cl3) occurring at position v (i.e. keystream
symbol wv).

Given a specific clocking triple (cl1, cl2, cl3), we can calculate an interval I for v,
where that clocking triple has a non-negligible probability of occurring. So, instead of
using only one keystream position when calculating the correlation probability as done
in (4.11) and (4.12), we can use all positions (v ≥ 101) where there is a non-negligible
probability of occurrence. In frame j we calculate a correlation probability (implicitly
conditioned on I in the jth frame), denoted pj(cl1,cl2,cl3) = P (s1

cl1
+s2

cl2
+s3

cl3
= 0),

as a weighted voting over several positions, using the formula

pj(cl1,cl2,cl3) =
∑
v∈I

P ((cl1, cl2, cl3) in vth position) · [Oj(cl1,cl2,cl3,v−100) = 0]

+ 1/2 · (1 −
∑
v∈I

P ((cl1, cl2, cl3) in vth position)), (4.14)
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where [x = 0] is the indicator function which equals 1 if x = 0 and 0 otherwise. Also,
Oj(cl1,cl2,cl3,v−100) = f̂ 1

cl1
+ f̂ 2

cl2
+ f̂ 3

cl3
+ zv−100 for frame j, as in (4.9) and (4.10).

Finally, I is the interval over which there is a non-negligible probability of occurrence
for the clocking triple (cl1, cl2, cl3).

If we assume that the bits entering the clock controlling device of A5/1 are uni-
formly distributed independent bits, we can write the probability (4.13) as a recursive
formula

P ((cl1, cl2, cl3) in vth position) = F (cl1, cl2, cl3, v), (4.15)

where

F (cl1, cl2, cl3, 0) = 1 if cl1 = 0, cl2 = 0 and cl3 = 0,

F (cl1, cl2, cl3, v) = 0 if cl1 < 0 or cl2 < 0 or cl3 < 0,

F (cl1, cl2, cl3, v) = 0 if cl1 > v or cl2 > v or cl3 > v,

F (cl1, cl2, cl3, v) = 0.25F (cl1 − 1, cl2 − 1, cl3 − 1, v − 1)
+ 0.25F (cl1, cl2 − 1, cl3 − 1, v − 1)
+ 0.25F (cl1 − 1, cl2, cl3 − 1, v − 1)
+ 0.25F (cl1 − 1, cl2 − 1, cl3, v − 1), otherwise.

This formula will give an exact probability under the assumption of independent uni-
formly distributed clocking bits. We will use these probabilities to approximate the
actual A5/1 case. The approximation works well when the probability is fairly high
(as in cases considered in this attack), since there are several different initial states that
give the desired (cl1, cl2, cl3, v).

Under the same assumptions as above, we can give a somewhat easier formula
which gives a closed expression for the probability in (4.13) as

P ((cl1, cl2, cl3) in vth position) =

(
v

v−cl1
)(
v−(v−cl1)
v−cl2

)(
v−(v−cl1)−(v−cl2)

v−cl3
)

4v
.

(4.16)

The formula in (4.16) can be derived using the following arguments. The first LFSR
has to not be clocked v − cl1 times. The number of possible positions for this to
happen in is

(
v

v−cl1
)
. For the remaining positions, the second LFSR has to not be

clocked v − cl2 times. These positions must not coincide with the positions in which
the first LFSR is halted, since at most one register can be halted at each clocking.
Similarly for the third LFSR and at the remaining positions, all three registers need to
be clocked. This results in the multinomial distribution given in (4.16).

The expression in (4.16) gives the same value as (4.15) for any valid clocking triple
(cl1, cl2, cl3) in position v, e.g. it will fail for (0, 0, 0) in position 10 which cannot
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Estimation by

P · 104 Eq. (4.15) or Eq. (4.16) simulation

P(76,76,76,101) 9.7434 9.7331

P(79,79,79,105) 9.2012 9.2033

P(80,80,80,105) 6.6388 6.6388

P(79,80,81,106) 8.3858 8.4126

P(82,82,82,109) 8.7076 8.7269

Table 4.3: Comparison of the approximated value given by (4.15) or (4.16)
and the estimated value from simulations of the A5/1 cipher. All
values should be multiplied by 10−4.

happen in A5/1. Table 4.3 gives an indication of the validity of the approximation
compared to an estimated value based on 100 million simulations of the A5/1 cipher.

We give a small fictitious example to clarify (4.14) for three different sequences of
values Oj(cl1,cl2,cl3,v−100), v = 101, 102, ..., 106. Note that the probabilities given in
Example 4.1 are unrelated to the actual A5/1 case.

Example 4.1: As presented in Figure 4.6, we have chosen I = {101, . . . , 106}. We
see from the tabulated example that if we calculate the sequence Oj(cl1,cl2,cl3,v−100),

v = 101, 102, ..., 106 to be only zeros in the interval I, using the known frame
number and the keystream z, then the probability that the key part s1

cl1
+ s2

cl2
+ s3

cl3
for this specific clocking is zero is fairly high (0.9). If we calculate the same sequence to
be only ones, the probability of the key part being zero is low (0.1). Finally, if we have
a mix of ones and zeros we see that the zeros are observed at positions where there are
(in total) a higher probability of occurrence, so in this case we vote for s1

cl1
+s2

cl2
+s3

cl3
being zero, due to a slightly higher probability (0.62). �

In order to use the information in all the available frames to estimate the value of
the linear combination s1

cl1
+s2

cl2
+s3

cl3
we will use a log-likelihood ratio. Firstly, define

p̂(cl1,cl2,cl3) = P (s1
cl1

+s2
cl2

+s3
cl3

= 0) as the total probability that s1
cl1

+s2
cl2

+s3
cl3

=
0, taken over all frames. Recall that pj(cl1,cl2,cl3) denoted the same for the jth frame
only. Then define the log-likelihood ratio Λ(cl1,cl2,cl3) of p̂(cl1,cl2,cl3) as

Λ(cl1,cl2,cl3) = ln
p̂(cl1,cl2,cl3)

1 − p̂(cl1,cl2,cl3)
, (4.17)

where ln is the natural logarithm. We can now find an estimate of Λ(cl1,cl2,cl3) over all

75



4. Cryptanalysis of A5/1

Keystream pos. v
100 101 102 103 104 105 106 107
.. z1 z2 z3 z4 z5 z6 ...

P ((cl1, cl2, cl3) in vth position) =
0.04 0.16 0.20 0.20 0.16 0.04

Oj = 0 0 0 0 0 0
pj(cl1,cl2,cl3) = 0.9

Oj = 1 1 1 1 1 1
pj(cl1,cl2,cl3) = 0.1

Oj = 1 0 1 0 0 1
pj(cl1,cl2,cl3) = 0.62

Figure 4.6: Example of three different sequences Oj
(cl1,cl2,cl3,v) and the

corresponding pj
(cl1,cl2,cl3)

probabilities calculated according to
(4.14).

frames by calculating

Λ(cl1,cl2,cl3) =
m∑
j=1

ln
pj(cl1,cl2,cl3)

1 − pj(cl1,cl2,cl3)
, (4.18)

where m is the number of available frames. For a log-likelihood ratio Λ defined as in
(4.17) we know that

Λ = 0 if P (s1
cl1

+ s2
cl2

+ s3
cl3

= 0) = 1/2,
Λ > 0 if P (s1

cl1
+ s2

cl2
+ s3

cl3
= 0) > 1/2,

Λ < 0 if P (s1
cl1

+ s2
cl2

+ s3
cl3

= 0) < 1/2.

We will now turn to specific parameter choices as we describe the final phase of
the attack. Starting at position 79, we pick a suitable interval of length 8, C1 =
{79, . . . , 86}, and look at all linear combinations of s1

cl1
+ s2

cl2
+ s3

cl3
where each of

cl1, cl2, cl3 runs in the interval C1. For each such value of (cl1, cl2, cl3) and for each
frame j = 1, . . . ,m, we calculate pj(cl1,cl2,cl3) and use (4.18) to calculate Λ(cl1,cl2,cl3).
Using Λ(cl1,cl2,cl3) we finally estimate the linear combination of key bits with a simple
hard decision. For example, if Λ(79,79,79) = 2.56 we estimate s1

79 + s2
79 + s3

79 = 0, if
Λ(79,79,80) = −0.93 then s1

79 + s2
79 + s3

80 = 1, etc.
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4.5 A refinement of the attack

We note that when (cl1, cl2, cl3) run through all possible values in the specified
interval of size 8, this gives a system of 83 = 512 linear equations with 8+8+8 = 24
unknown variables. The problem of finding the correct values of the 24 unknown
variables is now equivalent to the problem of decoding a length 512 linear code of
dimension 24. The estimated bits can be viewed as a received word of length 512,
and the corresponding equations are parity check equations for the code. If we have
enough frames to make the estimates reasonably accurate, we can decode the received
word and find 24 bits from the key.

Since the log-likelihood ratio Λ represents a soft value of the probability, it is
also possible to use a soft decoding algorithm. This algorithm would be expected to
perform better than a hard decoding algorithm, since it takes good advantage of the
given information. However, we have tried soft decoding and it did not improve the
attack notably. When the number of received frames increases, the probability tends
to either 0 or 1 quickly, thus reducing the advantage of soft decoding. The reduced
complexity of the hard decoding algorithm seems to be a better choice in this case.

Table 4.4 shows the average, maximum and minimum number of correct estimates
for the 512 equations in a run of 60 simulations, using the procedure described.

Number of thousand frames

in the estimation (m).

10 30 50 70 100 200

Average 283 293 309 320 326 354

Max 308 307 330 347 346 378

Min 259 283 288 303 301 339

Table 4.4: Number of correct estimates for a system of 512 equations.

Using the interval C1 = {79, . . . , 86} we solve for the bits s1
79, . . . , s

1
86, s2

79, . . . ,
s2

86 and s3
79, . . . , s

3
86 from the key part of the registers. Using (4.3) this will give

us 8 + 8 + 8 = 24 bits of information about the key Kc (in the form of linear
combinations of key bits). To fully recover the key (64 bits) we can increase the length
of the interval to 22, such that we get 22+22+22 > 64 bits of information about the
key, making the decoding much harder. Instead, we propose to pick a new subinterval
C2 = {87, . . . , 94}, thus recovering another 24 bits from the key. Finally, we do the
same for the subinterval C3 = {95, . . . , 102}. Then we have recovered 24 bits from
each shift register output and have a total of 72 bits. This is more than required for
solving for the key Kc.

The computational work to check a solution consists of first loading the estimated
bits into the register, then running the cipher backwards 79 clocks plus an additional
22 clocks for the frame number loading. Then loading the frame number in the usual
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4. Cryptanalysis of A5/1

way and running the 100 premix clocks and finally checking the generated keystream
output against the received keystream. The maximum number of output bits that
we need to check is approximately 64, since the state space is 64 bits. The resulting
computational work for checking a solution is therefore one register loading plus about
223 + 64 = 287 cipher clockings.

4.6 Simulations of the attack

Firstly, the probabilities pj(cl1,cl2,cl3) were calculated for each frame j = 1, . . . ,m
and (cl1, cl2, cl3) in the interval I. Then the log-likelihood ratios Λ(cl1,cl2,cl3) were
calculated based on the received keystream.

Secondly, the decoding in our simulations was done by exhaustive search over
all possible values of s1

t1
, s2
t2
, s3
t3

, where t1, t2, t3 each run through the interval I. The
solution which gave the closest Hamming distance to the received codeword was taken
as the correct solution. However, in order to have a high probability that the correct
solution is the codeword closest in Hamming distance to the received word, we needed
a large number of frames. Simulations have shown that when we have fewer than about
100,000 frames, there are often other (erroneous) solutions to the system of equations
that give a closer distance. To overcome this problem we save a list of the T ≈ 1000
closest solutions for each subinterval. Picking one solution from each list (subinterval),
we can combine them into three 24 bit LFSR sequences as allegedly produced by the
shift registers. These sequences are then verified by running the cipher backwards as
described in Section 4.5.

In the case of using an interval length of 8, we need three subintervals and the
number of combinations to verify amounts to T 3, which is rather expensive. A more
efficient way is to use overlapping intervals where each subinterval overlaps the previ-
ous subinterval with 2 or 3 bits. Now we only have to verify combinations that agree
in the overlapping bits. We can also use the fact that the sequences we want to verify
(using overlapping intervals) are 23 bits long and two of the shift registers are shorter.
Thus, a first test of the correctness of the combined sequence is to check whether
the last bits of the sequence fulfil the feedback polynomial for the two shortest shift
registers.

Using these techniques, simulations with T = 1000 have shown that we can
reduce the number of verifications from 10003 to between 5000 and 50000 for the
case when the interval size is 8 and number of overlapping bits is 3. The different
configurations used in our simulations are shown in Table 4.5.

Table 4.6 shows the success rate for different configurations and different number
of received frames. The entries are the number of successful attacks from a batch of 100
runs and in parentheses are the attack times for each configuration. The corresponding
length of the GSM conversation is also given (although this is a known plaintext attack
and would not apply directly to the GSM system). The simulations were run on a PC
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Interval size Overlapping bits Intervals

7 3 [79, 85], [83, 89], [87, 93], [91, 97], [95, 101]
8 3 [79, 86], [84, 91], [89, 96], [94, 101]
9 2 [79, 87], [86, 94], [93, 101]

Table 4.5: Configurations used in our simulations.

with an Intel Pentium 4 processor, running at 1.8 GHz, with 512 Mb of memory
using a Linux operating system.

Number of received frames
(time of GSM conversation)

30000 50000 70000
Configuration (2m30s) (3m45s) (5m20s)

7/3 2 (1) 13 (2) 49 (3)
8/3 2 (2) 20 (3) 57 (4)
9/2 3 (3) 33 (4) 76 (5)

Table 4.6: Simulation results using a list size of T = 1000. Entries show the
number of successes out of 100 runs. Time of attack in minutes
is given in parentheses.

The pre-computation phase in the presented attack amounts to calculating and
storing the probabilities that a certain number of clockings of the registers appear in a
certain keystream position. These are the probabilities used in (4.14). Using the same
hardware as in our simulations, it takes about 15 minutes to calculate the required
tables and less that 2 Mb to store them. We have summarised the implemented attack
in Figure 4.7.

Recalling (4.14), the summation is taken over an interval I where there is a non-
negligible probability of occurrence of clocking (cl1, cl2, cl3). Calculating the prob-
abilities for the highest clocking in the simulations, (101, 101, 101), shows that this
clocking has a very small probability of occurring beyond the v = 140th keystream
position (the 40th position in the output keystream since the first 100 are discarded).
Therefore, the attack only needs the first 40 bits of the keystream in each frame. Fur-
thermore, the frames used in the attack need not be consecutive.
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(i) Choose a subinterval C1 (e.g. C1 = [79, 86])

(ii) Let (cl1, cl2, cl3) run through the interval C1. For each frame j =
1, . . . ,m calculate

pj(cl1,cl2,cl3) =
∑
v=I

P ((cl1, cl2, cl3) in vth pos.)

· [Oj(cl1,cl2,cl3,v−100) = 0]

+ 1/2 · (1 −
∑
v=I

P ((cl1, cl2, cl3) in vth pos.))

Calculate the log-likelihood ratio of the weighted probability over all
frames

Λ(cl1,cl2,cl3) =
m∑
j=1

ln
pj(cl1,cl2,cl3)

1 − pj(cl1,cl2,cl3)

Estimate the linear combination

s1
cl1 + s2

cl2 + s3
cl3

= HD(Λ(cl1,cl2,cl3))

using a hard decision (HD) on the value of Λ(cl1,cl2,cl3).

(iii) Decode the generated linear code

s1
cl1 + s2

cl2 + s3
cl3

= HD(Λ(cl1,cl2,cl3))

for (cl1, cl2, cl3) in interval C1 using an ML decoding through exhaus-
tive search. Save the T closest solutions.

(iv) Repeat steps 1 to 3 for each new subinterval C2, C3, . . . until a total of
64 bits of the shift register sequences are recovered.

(v) Combine the solutions from each subinterval and check the validity of
the solutions.

Figure 4.7: A summary of the proposed attack.

4.7 Summary

In this chapter, we have proposed a new attack on the A5/1 stream cipher, based on
an identified correlation. In contrast to previously known attacks, this is not a time-
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memory trade-off attack, but uses completely different properties of the cipher. It
explores the weak key initialisation which allows us to separate the session key from
the frame number in binary linear expressions.

The complexity of the attack is only linear in the length of the shift registers and
depends instead on the number of irregular clockings before the keystream is pro-
duced. The implemented attack needs the 40 first bits from about 216 (possible non-
consecutive) frames, which corresponds to about 5 minutes of GSM conversation.
Our implementation of the attack shows that we have a high success rate of more
than 70%. This can be improved by using a larger list size and/or larger interval sizes.
The complexity of the attack using the parameters presented here is quite low and
the attack can be carried out on a modern PC in less than 5 minutes using very little
pre-computational time and memory.

The improvements compared to previous work are the following. All previous
attacks have a complexity exponential in the shift register length. The complexity of
the attack presented in this paper is roughly linear in the shift register lengths.

Previously known attacks also need either high pre-computational time and/or
memory complexity or they have a high active attack time complexity. The proposed
attack is simple to implement, has been successfully implemented, and completes its
task in less than 5 minutes.

Finally, the presented attack also identifies interesting new design weaknesses in
A5/1 that should be considered when constructing new stream ciphers.
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5
Cryptanalysis of E0

In 1999, five major telecom corporations together published the specifications for
a new radio network link called Bluetooth [10]. Bluetooth was developed to re-

place cables in short range communication. Examples of usage include synchronising
a handheld computer or PDA (Personal Digital Assistant) to a stationary computer,
wireless payments in shops with electronic cash, wireless handsfree equipment for mo-
bile phones, and removing some of the cable mess found behind most computers by
using a wireless keyboard, mouse and printer connection, et cetera.

Considering the proposed areas of usage, it is clear that the specification must also
include cryptographic functionalities. Bluetooth provides both authentication and
encryption. Authentication to ensure the correct sender and receiver and encryption
to ensure privacy in the communication. Both these functions are provided at the link
layer, but higher protocols can of course provide their own cryptographic layers.

Two ciphers are specified; SAFER+, a block cipher used in the authentication pro-
tocol, and E0, a stream cipher used for the link encryption. In this analysis we will
focus on the stream cipher and the encryption. The attack on E0 is based on a strong
correlation discovered within the cipher, and we use this correlation in a divide-and-
conquer style correlation attack. The results in this chapter were first presented in [30].

This chapter is organised as follows. Section 5.1 gives an introduction to Bluetooth
and a system overview. Section 5.2 describes the security system in Bluetooth, focus-
ing on the stream cipher E0. In Section 5.3 the discovered correlation is presented
and the proposed attack on E0 is introduced. Section 5.4 presents previously known
results and newer results on E0 by other authors, and finally a summary is given in
Section 5.5.
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5.1 Bluetooth—system overview

Bluetooth operates in the unlicensed 2.4 GHz frequency band. The exact parameters
differ between countries but in the US and most of Europe, there are 79 RF bands
defined, each of 1 MHz bandwidth. The transceiver uses frequency hopping among
these 79 RF bands to achieve a communication link of 106 symbols per second. The
channel is divided into time slots of 625 µs each. A Time-Division Duplex scheme
is used to get full duplex in the channel. The link is packet based, where each packet
normally covers a single time slot and is transmitted on a different hop frequency.
The maximum distance between two communicating Bluetooth units is in the range
of 10 to 100 metres, and the Bluetooth device can adjust the transmission power to
minimise energy consumption.

Each of the previously mentioned services require different modes of operation.
The PDA synchronisation should preferably be fast, but has no time critical require-
ments. On the other hand, the handsfree equipment uses a fairly low information bit
rate, but needs a synchronous connection to the mobile phone to ensure low latency in
the voice transmission. So, even if the radio link is packet based, Bluetooth can operate
in both circuit and packet switching mode by reserving time slots for the synchronous
transmission. It is possible to have up to three synchronous voice transmissions with
64 kb/s in each (voice) channel, or an asynchronous data transfer at maximum speed
723.2 kb/s in one direction with 57.6 kb/s in the return channel. If a symmetric asyn-
chronous channel is desired, Bluetooth can provide 433.9 kb/s in each direction. The
services are summarised in Table 5.1.

Packet type Symmetric rate (kb/s) Asymmetric rate (kb/s)
Forward Reverse

Asynchronous services
DM1 108.8 108.8 108.8
DH1 172.8 172.8 172.8
DM3 258.1 387.2 54.4
DH3 390.4 585.6 86.4
DM5 286.7 477.8 36.3
DH5 433.9 723.2 57.6
Synchronous services
HV1 64.0 - -
HV2 64.0 - -
HV3 64.0 - -
DV 64.0(V)+57.6(D) - -

Table 5.1: Summary of services. DM: Data-Medium rate, DH: Data-High
rate, HV: High quality Voice and DV: Data+Voice.
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The difference between DM and DH is that in DM an error correcting code of
rate 2/3 is employed whereas in DH, the extra bits are used for additional data bits.
DM3 (DM5) occupies 3 (5) consecutive frames to extend the payload size, thereby
reducing the overhead from frame headers. The HV1-3 packet types have different
payload sizes, and can be used to get up to three simultaneous voice connections.
These packet types are never retransmitted in order to ensure streaming (voice) data.
The DV packet provides both a voice and a data payload where only the data field can
be retransmitted. An important observation, from the point of view of attacking the
cipher in Bluetooth, is that the longest frame contains 2745 encrypted bits.

A Bluetooth session can be either a point-to-point connection, where only two
Bluetooth units are engaged, or a point-to-multipoint connection, where two or more
units are engaged. In a point-to-multipoint setting, each participating unit shares the
same channel. This is called a piconet. In each piconet there must exist a single master
unit, with all other units being slaves. The master is responsible for synchronisation
and also defines the frequency hop sequence to which all slaves will listen. A Bluetooth
unit can be engaged in several overlapping piconets and these piconets form a scatternet.
Each unit can only be a master of one piconet at each time, but can participate as a
slave in another piconet. Different piconets are not time nor frequency synchronised,
instead defining their own hopping sequences.

5.2 Security in Bluetooth

As Bluetooth may be used for highly private and confidential communication, e.g.
computer passwords, the system needs to provide basic cryptographic functionalities;
Authentication and identification for ensuring the correct sender and receiver, and
encryption to ensure privacy. This is provided through two cryptographic primitives.
For authentication and identification, Bluetooth uses a block cipher (SAFER+) with
a keysize of 128 bits. For link encryption, the stream cipher E0 is used. Due to
export regulations, the keysize of the encryption function is variable and configured
during the manufacturing process, after which it cannot be changed. The key setup
is a complex protocol depending on the type of connection, i.e. point-to-point or
piconet, but in short it is derived as follows. Each device uses a PIN-code, which can
be supplied to the device by the user, for example from a keypad, or can be supplied by
higher layers, for example by the application layer as a result of a Diffie-Hellman key
exchange. This PIN-code can be of variable length, from 1 to 16 bytes. In addition,
each unit has an unique address, BD_ADDR (Bluetooth device address), which is a
publicly known 48 bit value. The BD_ADDR can be obtained for each device by a
query, either from the user or from another Bluetooth unit. When a Bluetooth unit is
first used, it computes a unit key which is stored in non-volatile memory and is almost
never changed.

Firstly, for a point-to-point communication setup, a 128 bit initialisation key is
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derived in both units based on the PIN and (depending on the size of the PIN) the
BD_ADDR of the claimant unit. This key is used for a few transactions to establish a
new 128 bit key called the link key Klink. The reason for this step is that units with
small memory resources are able to provide their own unit key as the link key, and thus
save memory if they are engaged in several piconets. Then, a mutual authentication
scheme is performed to ensure the correctness of the link key. From the link key,
the cipher key Kc is derived. This key has a factory preset length, due to the export
regulations. The link key is only used for authentication and is not as strictly regulated
as the encryption keys, thus Klink is always 128 bits.

The stream cipher E0

The cipher key Kc, together with a 48 bit BD_ADDR, a 128 bit publicly known
random value, and the 26 least significant bits from the master clock are used as ini-
tial values for the link encryption algorithm, E0. This is a stream cipher with LFSRs
feeding a finite state machine (FSM). The state machine is an elaboration on the sum-
mation combiner introduced by Rueppel [103]. The binary output from the state
machine is the keystream, which is xored to the plaintext to form the ciphertext. The
cipher is pictured in Figure 5.1, where the numbers to the left of the LFSRs are the
length of the registers.

Remark. The notation used in this chapter conforms to the one used in the specifica-
tion [10], and might thus differ from the rest of this thesis.

The boxes labelled z−1 are delay elements holding two bits each. T1 and T2 are two
different linear bijections over F

2
2, (x1, x0) → (y1, y0) where T1(x1, x0) → (x1, x0)

and T2(x1, x0) → (x0, x1 ⊕ x0). Let xit denote the output from LFSRi at time t.
The output from the keystream generator, zt, can now be written as

zt = x1
t ⊕ x2

t ⊕ x3
t ⊕ x4

t ⊕ c0
t . (5.1)

Furthermore, the following relations hold (Notations are from Figure 5.1).

st+1 = (s1
t+1, s

0
t+1) = yt + ct

2
�, (5.2)

yt = x1
t + x2

t + x3
t + x4

t , (5.3)

ct+1 = (c1
t+1, c

0
t+1) = (s1

t+1, s
0
t+1) ⊕ T1(ct) ⊕ T2(ct−1). (5.4)

Since the addition in (5.2) and (5.3) is over the integers, we have the possible
values yt ∈ {0, 1, 2, 3, 4} and st ∈ {0, 1, 2, 3}. Furthermore, (s1

t , s
0
t) is the binary

vector representation of st with the natural mapping 0 → (0, 0), 1 → (0, 1) et cetera.
The four feedback polynomials used for the LFSRs are given in Table 5.2. To complete
the operative description of the cipher, we note that the LFSR output, xit, is not taken
from the end of the shift register, but from the taps given in Table 5.2.
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Figure 5.1: Bluetooth stream cipher E0. The small numbers indicate the
number of bits in the "wire".

LFSR feedback polynomial output tap

1 t25 + t20 + t12 + t8 + 1 24

2 t31 + t24 + t16 + t12 + 1 24

3 t33 + t28 + t24 + t4 + 1 32

4 t39 + t36 + t28 + t4 + 1 32

Table 5.2: Feedback polynomials for the four LFSR in E0.

The key initialisation in E0 is somewhat more complicated and involves a premix-
ing of the initially loaded key material, the details of which can be found in the Blue-
tooth specification documents [10]. However, it is important that the initial values of
the LFSRs are dependent on the master clock, and that the registers are reinitialised
and premixed for each frame. Two consecutive frames with little difference in the
master clock will not generate initial states with little difference due to this premixing.
To simplify matters, we will refer to the state of the LFSRs after this premixing as the
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5. Cryptanalysis of E0

initial state. Recall that the largest frame contains 2745 encrypted bits, which is the
longest keystream we can expect to see generated by a particular initial state.

5.3 Attacking E0

Since the nonlinear function in E0 has memory, we cannot directly apply the correla-
tion attacks from Section 2.6, but need to remodel the cipher, using the well-known
method of replacing the nonlinear part with a sequence of random variables having
some correlation probability. For this, we start by searching for correlations in the c0

t

sequence, which is the only nonlinear part of the keystream.
This approach to attacking E0 is not new, but was first considered by Hermelin

and Nyberg [59]. They discovered a correlation

P (ct ⊕ ct−1 ⊕ ct−3 = 0) =
1
2
− 0.03125, (5.5)

valid for all t ≥ 0. By viewing the nonlinear function as a Finite State Machine (FSM),
we can analyse all possible state transitions and find two stronger correlations in the c0

t

sequence,

P (ct ⊕ ct−1 ⊕ ct−2 ⊕ ct−3 ⊕ ct−4 = 0) =
1
2
− 0.04883, (5.6)

P (ct ⊕ ct−5 = 0) =
1
2

+ 0.04883. (5.7)

These new correlations were independently discovered by Fluhrer [39]. Correlation
probabilities are normally written as 1

2 + ε, so in (5.7) we have ε = 0.04883.
Our proposed attack is a divide-and-conquer style of attack, primarily targeting

the initial state of LFSR1. Assume that we have a given received keystream zt of
length N . Firstly, we note that the three other LFSRs can be combined into a single
equivalent LFSR. Denote the output sequence from this equivalent LFSR by ut, 0 ≤
t ≤ (N−1). Furthermore, we assume that the sequence c0

t is a random noise sequence
with the correlation property described by (5.7). We can now model a simplified
version of E0 as in Figure 5.2. Next, we try to guess the initial state of LFSR1, and
add the presumed produced sequence, x′t, to zt. If the guess is correct, the resulting
sequence can be written as

vt = zt + x′t = ut + ct, (5.8)

where we have dropped the 0 superscript of ct. From coding theory [100] we know
that the sequence u0, u1, . . . uN−1 is a linear (N, l)-block code C, with generator
matrix G, which is straightforward to calculate. The number of information symbols
in C is l, which is equal to the length of the equivalent shift register, i.e. the sum of
the length of LFSR2, LFSR3 and LFSR4. If we write the sequence ut as a row vector
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Equivalent LFSR

LFSR1 x1
t

ut

c0
t

zt

Figure 5.2: Simplified model of the E0 stream cipher.

u = (u0, u1, . . . , uN−1), we have u = u0G, where u0 is the initial state of the
equivalent shift register. Suppose we can find k columns in G such that

Gi1 +Gi2 + · · · +Gik = 0, (5.9)

then we must have ui1 + ui2 + · · · + uik = 0 for the sequence ut. Since the code C
is cyclic, we can write ∑

i∈I
ut+i = 0, (5.10)

for any time index t ≥ 0, where I is the set of indices in (5.9). We can now remove the
influence of ut in vt by summing over indices in I, indicated by (5.10). Considering
the correlation in ct given in (5.7), we can write∑
i∈I

vt+i+vt+i−5 = (ct+i1 +ct+i1−5)+(ct+i2 +ct+i2−5)+ · · ·+(ct+ik +ct+ik−5),

(5.11)
and we get

P (
∑
i∈I

vt+i + vt+i−5 = 0) =

P ((ct+i1 + ct+i1−5) + (ct+i2 + ct+i2−5) + · · · + (ct+ik + ct+ik−5) = 0) =
1
2

+ 2k−1εk. (5.12)

This equation is used to verify that the initial state of LFSR1 was indeed guessed
correctly. If this is the case, the correlation in (5.12) can be detected, and if we did not
guess LFSR1 correctly, we have only added more noise to the sequence vt, and will not
be able to detect any correlation. The model of the attack is pictured in Figure 5.3.

Depending on the magnitude of ε, we have to sample vt according to (5.11) at
many different time instances in order to get statistical significance in the hypothesis
that LFSR1 was guessed correctly. If we guess right, the distribution of the sum in
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Equivalent LFSR
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Figure 5.3: Model of the attack.

(5.11) tends to 1
2 + 2k−1εk, and if we are incorrect it tends simply to 1

2 , and another
initial state of LFSR1 must be trialled.

Required length of the received sequence

The attack has two parameters that will influence the required length, N , of the re-
ceived sequence zt. Firstly, the value of the highest index in I. This comes from the
fact that we need to look at a span of zt such that indices can be found that satisfy
(5.10). Secondly, we need to shift (5.11) in time, say m shifts, to gain statistical signif-
icance. We will start with the first problem of finding an estimate of the highest index
in I. The problem is restated as a theorem for a random generator matrix.

Theorem 5.1: Assume a cyclic code C with a random generator matrix G. The total
number of columns, w, in G required to find k columns that add to the all-zero
column is approximately 2l/(k−1), where l is the number of rows in G. �

A proof of Theorem 5.1 can be found in [44].
Even if the true generator matrix is not random, the above theorem gives a good ap-

proximation of the required length of the received sequence in order to find k columns
that add up to the all-zero column.

We now turn to the other question of how many samples, m, we need in order to
separate the uniform distribution PU (X = 0) = 1

2 from our indicator distribution
PE0(X = 0) = 1

2 + 2k−1εk. From the theory of hypothesis testing in Section 3.2, we
know that this is a well-studied problem and the distributions can be separated using
approximately 1/(2k−1εk)2 samples.

Since PE0(X = 0) gets closer to 1/2 with increasing k, the Chernoff information
C(PU , PE0) is decreasing. Hence, the required number of samples, m, increases with
increasing k, for a fixed error probability. From Theorem 5.1 we know that w ≈
2l/(k−1), so w decreases with increasing k. The total required number of observed
keystream bits, N , is the sum N = m + w, and naturally we should choose k such
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that we minimise N . We look at a brief example of attacking LFSR1, and compare
the results for different k.

Example 5.2: For the attack on the first shift register in E0, we have l = 103 and
ε = 0.04883. Firstly we need w = 2l/(k−1) bits to find k columns in the gener-
ator matrix that add to zero. Aiming for an error probability of 2−6, we then need
m = 6/C(PU , PE0) samples for the hypothesis testing. The results for different k are
tabulated in Table 5.3. We see that k = 4 is the best choice for attacking LFSR1. �

k m w N = m+ w

3 225.2 251.5 251.5

4 232.0 234.3 234.6

5 235.3 225.8 235.3

Table 5.3: Different choices of k for attacking LFSR1 in E0.

When performing the attack, we sum the sequence vt according to (5.11) and
count the number of times it equals zero. Let n0 be the number of times it equals zero
and n1 be the number of times it equals one, and we havem = n0 +n1. Furthermore,
let ε̂ = 2k−1εk such that we can write PE0 = 1/2 + ε̂. According to the Neyman-
Pearson lemma, we perform the test between the two hypotheses H0 : PU and H1 :
PE0 as

( 1
2 )m

( 1
2 + ε̂)n0( 1

2 − ε̂)n1
> T, (5.13)

with decision threshold T ≥ 0. If we choose T = 1, and use k = 4 and m = 232,
we will have equally high probability for the two error events, PF = PM = 2−6.
However, we could instead use an unsymmetrical threshold and decrease PF at the
expense of PM . It can be shown [24], that the probabilities of error can be expressed
as

PM = 2−mD(Pλ||PE0 ), (5.14)

PF = 2−mD(Pλ||PU ), (5.15)

where Pλ is the probability distribution on the boundary between the two decision
regions determined by T and D(P0||P1) is the relative entropy defined as

D(P0||P1) =
∑
x∈ℵ

P0(x) log2
P0(x)
P1(x)

. (5.16)
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The boundary distribution Pλ is determined by the chosen threshold such that

D(Pλ||PE0) −D(Pλ||PU ) =
log2 T

m
. (5.17)

The exact value of the threshold is not crucial, but we would like to have PF <<
PM . Since the length of LFSR1 is 25, and if we choose a threshold such that PF ≈
2−10 we will then get about 215 false alarms, i.e. we have reduced the number of secret
bits in LFSR1 from 25 to 15. Having PM of the same small order would cost too
much in terms of required observed keystream, therefore we use an unsymmetrical
threshold of T = 25, resulting in PM ≈ 2−4.

The results for attacking the full E0 are presented in Table 5.4.

LFSR k m w N T PF PM Comp. complexity

1 4 232 234 234 25 2−10 2−4 225232 = 257

2 4 232 224 232 25 2−10 2−4 231232 = 263

3 3 228 219 228 30 2−32 2−28 233228 = 261

4 - - - - - - - 23924 = 243

Table 5.4: Computational complexity of attacking the E0 stream cipher. All
exponents are rounded to the nearest integer.

For LFSR3, the error probabilities are very low because C(PU , PE0) is relatively
large, and hence we can allow a longer received sequence, giving a very low error
probability. The attack on LFSR4 is not carried out as on the other LFSRs, since
we only need to guess the state of LFSR4 together with the 4 bits in the FSM, and
compare the resulting keystream with the observed one.

The full attack requires approximately 234 bits in received length and the compu-
tational complexity is about 263. However, the primary target for this attack is the
initial state of LFSR1, and after that is found, one might (as indicated in [51]) find
stronger correlations in the FSM, and thus increase the performance of the attack for
the other shift registers.

Finally, we note that the required length of the observed keystream is much larger
than the largest frame used in Bluetooth. Thus, we cannot hope to apply this attack
on the actual Bluetooth encryption scheme.

5.4 Previous and newer attacks on E0

The first attack on E0 was presented 1999 by Hermelin and Nyberg [59]. They
discovered a weaker correlation than presented here, and used that in an attack similar
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to that presented in this thesis. Their attack can recover the initial state of the shift
registers with a given keystream length of 264 and a computational complexity of 264.

The attack discussed in this chapter was presented in 2000 [30] and more recent
proposals include the following attacks.

In 2001, Fluhrer and Lucks [40] presented an attack which does not only recover
the initial state of the shift register, but also reverses the premixing step, and thus the
attack can recover the session key Kc. This is done within the available amount of
keystream, using several frames. The computational complexity is between 276 and
284, depending on the amount of known keystream material. Their attack starts by
guessing the initial state of LFSR1 and LFSR2 together with the state of the FSM.
By observing the keystream, they can then decide whether the xor of the outputs
from LFSR3 and LFSR4 is one or zero and build a search tree with linear equations.
Whenever there is an inconsistency in the path, they backtrack and try a different
branch.

Golić, Bagini, and Morgari [51] presented an attack based on linear correlations
between the output sequence of the LFSRs and the keystream sequence. A correlation
conditioned on a known LFSR1 sequence is used, together with decoding techniques,
to obtain a computational complexity of 270 for recovering the session key Kc. The
attack can be carried out with a very short observed keystream, i.e. within the limits
of the Bluetooth frame length.

In a very recent unpublished report, Armknecht [2] proposes an algebraic approach
to solve for the initial state of E0. Armknecht identifies an equation of degree 4,
which holds with probability 1 at each clocking. By linearisation, the system becomes
solvable, assuming that enough independent equations can be collected. From the size
of the state space, it is concluded that the number of possible terms in the linearised
system is T ≈ 224.056 and by employing Strassen’s algorithm for solving systems of
linear equations, the complexity of this approach is concluded to be about 270.341. It
is also conjectured in [2] that, in order to get enough independent linear equations,
the number of observed keystream bits must be approximately T = 224.056, but the
question is regarded as an open problem.

5.5 Summary

In this chapter we have given a brief introduction to the Bluetooth wireless network
system and the services it can provide in terms of information transfer rates. We have
presented the stream cipher E0, used in Bluetooth for link encryption, and given the
operational details for keystream generation.

We have demonstrated a strong correlation within the nonlinear output sequence
from the FSM, found by examining all possible FSM state transitions of depth 8.
This correlation has then been used in a divide-and-conquer style correlation attack,
targeting the three smallest LFSRs. The attack needs about 234 known keystream bits
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and requires a computational complexity of about 263 to fully recover the initial state
of E0.

Further work on Bluetooth might include a deeper analysis of the FSM correla-
tions if one or two registers are known. Also, a super-tuned time-memory tradeoff
attack could be considered, similar to the one performed by Biryukov, Shamir, and
Wagner [8] on A5/1, discussed in Chapter 4.
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6
Cryptanalysis of the
shrinking generator

The shrinking generator (SG) is a well-known pseudo random keystream generator,
proposed in 1993 by Coppersmith, Krawczyk, and Mansour [18]. It is intended

for use in stream cipher applications and is of interest due to its conceptual simplicity.
It combines only two LFSRs in a very simple way. One of the LFSRs controls the
output of the other, and the produced keystream is an irregularly decimated version of
a maximum-length sequence.

Denote the two independent binary LFSRs by A and S. The pseudo-random bits
are produced by shrinking the output sequence of the generating LFSR A under the
control of the selecting LFSR S as follows. The output bit of LFSR A is taken if the
current output bit of LFSR S is 1, otherwise it is discarded. It is recommended in [18]
that, besides the initial states, the feedback polynomials are also to be defined by the
secret key and thus kept unknown to the attacker. The SG is pictured in Figure 6.1.

Generating LFSR, A

Selection source, S

Selection
logican

sn

Keystream zt

Figure 6.1: Model of the shrinking generator.
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The attack discussed in this chapter is a known-plaintext distinguishing attack and
it was first presented in [36]. The attack exploits a newly detected non-randomness in
the distribution of output blocks in the generated keystream. The attack requires the
feedback polynomial of A to be known, thus it is not directly applicable to the SG if
secret feedback polynomials are used.

To describe the approach, denote by a-stream the output sequence generated by
LFSR A and by z-stream the output sequence generated by the SG. The bits in the
a-stream are denoted an, n ≥ 0 and the bits in the z-stream are denoted zt, t ≥
0. Rather than single bits, bit strings (blocks) in the a-stream are considered and
compared with suitable strings in the z-stream.

Consider a block of odd length, centred at the position of an in the a-stream.
If this block is xored with similar blocks (of equal length) centred at all other tap
positions in the LFSR-recursion, including the feedback position, the sum is (trivially)
the all-zero block. For blocks of odd length, the majority bit is set to 1 if the number
of ones is larger than the number of zeroes, and 0 otherwise. Then a key observation
is that the majority bits of such blocks fulfil the linear recursion of LFSR A with a
probability larger than 1/2.

Through the shrinking process, the exact positions of the undiscarded a-stream bits
in the z-stream are lost. However, the deletion rate is 1/2, and we can guess the average
shrunken tap positions by halving the distances of the tap positions in the a-stream.

The main idea of our attack is to consider samples in the z-stream where the blocks
near the shrunken tap positions are all imbalanced (a block is imbalanced if it has a
different number of ones than zeroes). The bits in these blocks have, with high prob-
ability, been generated by bits in the neighbourhood of the original tap positions. If
a z-block (i.e. a block in the z-stream) with high imbalance is found, the probability
that the corresponding a-block is imbalanced, is quite high. By estimating the imbal-
ance in the a-blocks using the measured imbalance in the z-blocks, we can estimate the
majority bit of the a-blocks.

If these estimated majority bits fulfil the linear recursion of LFSR A with a prob-
ability larger than 1/2, we can distinguish the z-stream generated by the SG from a
truly random sequence. Theoretical estimates as well as extensive experiments have
shown that we are able to reliably distinguish the SG from random for low-weight re-
cursions of LFSR A. For example, for a weight 4 recursion of length 10000, the attack
needs approximately 232 output bits, and for a weight 3 recursion of length 40000, the
attack needs approximately 223 output bits to reliably distinguish the SG.

As the feedback polynomial of an arbitrary LFSR of length l is known to have a
polynomial multiple of weight 4 and length about 2l/3 [13, 44, 66, 118], our distin-
guisher also applies to arbitrary, shrunken LFSR-sequences of moderate length.

This chapter is organised as follows. In Section 6.1 the proposed attack is presented
in more detail. In Section 6.2 the probability of success and required length of observed
keystream is analysed. Simulation results are presented in Section 6.3 and an overview
of related work is given in Section 6.4. In Section 6.5 a summary of the chapter is
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given and finally, some technical details of the analysis are presented in Section 6.6.

6.1 Description of the attack

For the description of the attack, we assume the feedback connection of the generating
LFSR A to be known and given by the linear recurrence

an + an+n2 + an+n3 + . . .+ an+nW
= 0, n ≥ 0, (6.1)

whereas the selecting sequence can be any random sequence with independent and
equally distributed bit probabilities. See Figure 6.2.

Generating LFSR, A

Uniform source

Selection
logic

Linear recurrence: an + an+n2 + . . .+ an+nW
= 0

a-stream z-stream

Figure 6.2: Model of the shrinking generator used in the attack.

We do not distinguish the feedback position from the other tap positions, so for a
certain bit an, the tap positions are n, n + n2, n + n3, . . . , n + nW . Now, con-
sider a bit string (block) surrounding a position an in the a-stream, i.e. a string
(an−k, . . . , an, . . . , an+k) for some k. If we xor this block with the blocks (of equal
length) surrounding the other positions in the LFSR recurrence equation, an+n2 , . . . ,
an+nW

, the sum (trivially) is the all-zero block. If we choose the considered block
length to be odd, each of the W blocks must have a unique majority bit. The majority
bit is 1 if the number of ones in the block is larger than the number of zeros and vice
versa. The main observation is that the majority bits of such blocks fulfil the linear re-
currence equation of the LFSR with a probability larger than 1/2. Firstly, we formally
introduce the intuitive notion of imbalance.

Definition 6.1: The imbalance of a block B, Imb(B), is defined as

Imb(B) = number of ones in B − number of zeros in B

Furthermore, a block B is said to be imbalanced if Imb(B) �= 0.

The general idea is to search for imbalanced blocks in the z-stream at positions
zt1 , zt1+n2/2, . . . , zt1+nW /2. These positions are called the shrunken tap positions,
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where t1 implicitly is the reference position. The bits in these blocks have, with high
probability, been generated by bits in the neighbourhood of the unshrunken tap po-
sitions, an1 , an1+n2 , . . . , an1+nW

, where w.l.o.g. we assume an1 = zt1 . If we find a
block with high imbalance in the z-stream, then the probability that the corresponding
block in the a-stream is imbalanced is quite high. Then we can derive good approxi-
mations of the true majority bits in the a-blocks.

The attack has two phases. The first phase is a search for positions in the output
sequence, where we find imbalanced blocks centred around each of the shrunken taps.
Whenever we find such a position, we say we have a hit and invoke the second phase,
which estimates the majority bits of the unshrunken segments. We then count the
number of times the xor sum of the estimated majority bits equals zero, and compare
with the truly random case.

First phase

Pick a block B1 of odd length BL1 = E + 1 centred around a reference position zt1 ,
where E is an even parameter of the attack. This mean that we have

B1 = (zt1−E/2, . . . , zt1 , . . . , zt1+E/2), (6.2)

and as we assume zt1 = an1 , the bits in B1 come from bits surrounding an1 .
The next unshrunken tap an1+n2 is, with high probability, mapped to an interval

near t1 + n2/2. This interval size grows proportionally to
√
n2. The same holds for

the other taps. Thus at tap position nj , j = 2, . . . ,W , we measure on a block centred
at position t1 + nj/2 of length BLj ≈ BL1 + √

nj/2. The ≈ symbol denotes
here: "take the closest odd integer", since we need an odd length for having a unique
imbalance.

Next, we measure the imbalance in each block, Imb(Bj), j = 1, . . . ,W . When-
ever we have |Imb(Bj)| > T, j = 1, . . . ,W , where T is an imbalance threshold, we
have found a hit, and it is likely that the a-blocks surrounding the unshrunken taps
are also imbalanced. If we do not find imbalanced z-blocks at the chosen reference
position we pick a new zt1 and again measure the imbalance. However, if we have a
hit in phase 1, we invoke the second phase.

Second phase

The first goal of the second phase is to try to estimate the bit probability of the a-
blocks. Firstly we introduce some notations. Let S1 be the a-block of length La
surrounding an1 . Similarly, we denote by Sj , j = 2, . . . ,W the a-block of length La
surrounding an1+nj

. Denote by pj , j = 1, . . . ,W the estimated probability that a
bit in Sj equals 1.

Since we assumed that the centre bit zt1 = an1 , we will use the first block as a
reference. The first z-block is of length E + 1. We denote this reference block length
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by Lz = E + 1. For our considerations we can assume that the z-block B1 of odd
length was produced by an odd length a-block. Thus we choose the a-block length as
La = 2Lz − 1 = 2E + 1.

If we measure the imbalance Imb(B1) in B1, and assume that the bits which
where discarded are balanced, i.e. the La − Lz = E bits not visible as output bits are
equally distributed, we have the following estimate

p1 =
number of ones in S1

La
=

(Imb(B1) + Lz)/2 + E/2
La

(6.3)

=
1
2

+
Imb(B1)
4E + 2

. (6.4)

For the other W − 1 taps we proceed in a slightly different way. Since we are not
sure which z-block contains the most bits from Sj , we must consider several z-blocks
centred near zt1+nj/2. Thus, we pick an interval Ij and calculate a weighted average
over Ij , of the bit probability in Sj as

pj =
1
2

+
∑
k∈Ij

imbj,k
4E + 2

P (k is the best position for estimating Sj), j = 2 . . .W,

(6.5)
where imbj,k is the imbalance in the z-block of length Lz surrounding zt1+nj/2+k.
The expression for P (k is the best . . .) is discussed in Section 6.6, but the aim is to try
to derive a probability that the z-block at t1 + nj/2 + k has the most bits from Sj ,
and we assume that the binomial distribution

P (k is the best position for estimating Sj) = Bin[nj , 0.5](
nj
2

+ k), (6.6)

is adequate. Figure 6.3 shows a picture of the blocks used in the weighting process for
a small interval of k ∈ [−1, 0, 1].

In (6.5), we have used similar calculations as in (6.3) with the additional assump-
tion that the bit probability is 0.5 if the best position, k, is outside the interval Ij .

The estimated bit probability pj , j = 1, . . . ,W also represents an estimate of the
majority bit for Sj . For each hit we have in phase 1 of the attack, we can determine
an estimate of the xor sum of the majority bits. The simplest decision rule is to first
make a hard decision on the estimated majority bit m̂j as

m̂j =

{
1 if pj ≥ 1

2

0 otherwise
, j = 1, . . . ,W, (6.7)

then check if the xor sum
∑
j m̂j = 0 holds. By dividing the number of times the xor

sum equals zero with the number of hits, we can derive a measured final probability
that the sum of the true majority bits equals zero.
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a-stream:

z-stream:

k = −1

k = 0

k = 1

position n1 + nj

position t1 + nj/2 − 1

position t1 + nj/2

position t1 + nj/2 + 1

a-block Sj of length La

blocks of length Lz

Figure 6.3: Diagram showing the blocks used in the weighting process for
estimating pj , j = 2, . . . , W . The interval Ij shown here only
includes 3 positions.

We can also employ a soft decision rule. It is well-known [61] that a soft decision
rule is no worse than a hard decision rule, so employing a soft decision rule can only
improve the attack. The hard decision rule, however, is simpler to analyse, and for that
reason we have used a hard decision rule in the analysis and in our simulations.

If we are attacking the SG, we expect the total probability to equal

P = 0.5 + εH , (6.8)

where εH is a positive value depending on the number of hits we obtain in phase 1,
H . If we are attacking a truly random sequence, we expect P = 0.5. The optimal test
to distinguish between these cases is a Maximum Likelihood (ML) test [24], where we
use a threshold Γ such that if P ≥ Γ we decide the output sequence is generated from
the SG, otherwise we decide it is a random source. We have summarised the proposed
attack in Figure 6.4, where we have used a threshold Γ equal to approximately one
standard deviation from the expected value for a truly random sequence.
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Input: even integer E, imbalance threshold T , the tap positions nj , j =
1, . . . ,W , where n1 = 0, and a sequence Zt, t = 1, . . . , N of received bits.

(i) Setup variables.

BL1 = E + 1,

BLj = closest odd integer (BL0 +
√
nj/2), j = 2, . . . ,W,

Ij = integers in [−√
nj/3, . . . ,

√
nj/3], j = 2, . . . ,W,

low = E/2, high = N − (nW /2 +
√
nW /3 + E/2),

hits = 0, good = 0.

(ii) For t1 = low to high do

(a) For all j = 1, . . . ,W , let Bj be the z-block centred at t1 +nj/2
of length BLj .

(b) Let imbj = Imb(Bj), j = 1, . . . ,W .

(c) If ∀j |imbj | > T then

i. Increase hits and set

p1 =
1
2

+
imb1

4E + 2
,

pj =
1
2

+
∑
k∈Ij

imbj,k
4E + 2

(
nj

nj/2 + k

)(1
2

)nj
, j = 2, . . . ,W,

where imbj,k is the measured imbalance in the z-block of
length BL1 centred at position t1 + nj/2 + k.

ii. Make a hard decision ∀j, m̂j = 1 if pj ≥ 0.5 otherwise
m̂j = 0.

iii. if
∑
j m̂j = 0 increase good. (

∑
denotes the xor sum here.)

(iii) Set Γ = 0.5 +
√
hits/(2 · hits).

(iv) If good/hits > Γ return Shrinking else return random.

Figure 6.4: A summary of the proposed attack using a hard decision rule.

6.2 Analysis of the proposed attack

We start by considering the probability that the majority bits of Sj , j = 1, . . . ,W
fulfil the recurrence equation. We will be using imbalance and Hamming weight (or
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6. Cryptanalysis of the shrinking generator

simply weight) interchangeably, as they measure similar quantities, where the weight of
a block B is the number of ones in B. For a block length of L we have the conversion
between the imbalance imb and the weight hw as

imb = 2hw − L,

hw =
imb+ L

2
.

Furthermore, we will use the notation wH(B) to denote the Hamming weight of the
block or string B.

The probability distribution of the sum of the majority bits

Assume we look at the direct output of an LFSR with W taps (including the feed-
back position). Pick a reference position an in the a-stream and consider the positions
an+n2 , . . . , an+nW

that together with an sum to zero, according to the linear recur-
rence equation of the LFSR. At each position we take a centred block (or vector) Sj
of odd length La. The positions and the length are assumed to be chosen such that
the blocks are non-overlapping. The aim is to calculate the probability that the ma-
jority bits of the segments fulfil the recurrence equation of the LFSR. We assume the
distribution of the possible vectors at tap j, j = 1, . . . ,W − 1, only to be dependent
on the weight of the vector. The vector at the final tap is totally determined by the
choices at the W − 1 previous taps since the xor of the vectors must be the all-zero
vector. Introduce the notation

Vj(α) = P (wH(Sj) = α), (6.9)

for the probability that we have a vector of length La and weight α at tap j, j =
1, . . . ,W − 1.

We can partition the possible vectors at the taps into sets of equal weight. The
probability of each set is given by Vj(α). When we xor the first two vectors, we get a
new probability distribution on the sets of different weights. In these sets, the majority
bit of the vector sum may or may not agree with the sum of the majority bits of the
xored vectors. So when we derive the new distribution, we also keep track of when the
sum of the constituent majority bits agree with the majority bit of the resulting vector.
When we have xored the W −1 vectors, we know that the final vector must agree with
the sum of the first W − 1 vectors. Thus we can sum the probabilities where the sum
of the constituent majority bits agree with the majority bit of the resulting vector.

The technical details of the calculations can be found in Section 6.6. We only
conclude the validity of the approach by comparing the theoretical probability to a
number of simulations for different block length La with W = 4. The comparison is
shown in Table 6.1. The number of trials in each simulation was 10, 000, 000.
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6.2 Analysis of the proposed attack

La Simulations Theory

5 0.56082 0.56054
0.56050

11 0.52254 0.52207
0.52169

17 0.51372 0.51340
0.51298

29 0.50764 0.50748
0.50727

Table 6.1: Results from two simulations versus theory for the probability
that the majority bits sum to zero.

Skewing the distributions Vj

Since in phase 1 of the attack we impose the condition that the absolute value of the
imbalance in the z-block should be greater than a certain threshold T , the distributions
Vj for the a-blocks will not be binomial, as expected from a random source. As the
probabilities P (Imb(Bj) > T ) = 0.5 and P (Imb(Bj) < −T ) = 0.5 are equally
likely, we divide the distribution Vj into two parts

Vj(α) =
V +
j (α) + V −

j (α)
2

, j = 1, . . . ,W, (6.10)

where

V +
j (α) = P (wH(Sj) = α|Imb(Bj) > T ), (6.11)

V −
j (α) = P (wH(Sj) = α|Imb(Bj) < −T ), (6.12)

and wH(Sj) is the weight of the a-block Sj .
We cannot hope to give an exact expression for (6.11) and (6.12) since there are

too many interdependencies between adjacent imbj,k in (6.5). We can however derive
approximate expressions. The derivation can be found in Section 6.6. Intuitively,
and also from the derived approximations, we note that V +

j and V −
j are "mirrored"

distributions in the sense that V +
j (α) = V −

j (La − α).

An approximation of the required number of hits

Firstly, we consider the probability that the estimated majority bit m̂j is correct. We
will confine ourselves to the case of a hard decision rule. Through simulations we
have noted that these probabilities are not independent. The first W − 1 majority bits
are more often correctly predicted if all or most of the W − 1 a-blocks are strongly
imbalanced. But then also theW th block tends to have some imbalance and thus gives
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6. Cryptanalysis of the shrinking generator

a better prediction of the majority bit. In the analysis however, we will assume that
they are independent.

Assume without loss of generality that mj = 1. Then we know that the vectors
of Sj are drawn (on the average) from the distribution V +

j . The probability Pmj
that

mj is correct is determined by the probability mass that gives a majority bit equal to
1. We have

Pmj
=

La∑
α=(La+1)/2

V +
j (α), j = 1, . . . ,W. (6.13)

The same holds if we have mj = 0 as a result of the mirrored properties of V +
j and

V −
j .

Letmj be the true majority bit of the a-block Sj , and as before, let m̂j be the hard
decision estimate as derived in the attack. We have P (mj = m̂j) = Pmj

. We can
model this as if we have a noisy observation of the true majority bits, where the noise
for each observation is equal to 0 with probability Pmj

. Furthermore, let Pn denote
the probability that noise variables sum to zero. Using the independency assumption
and the piling-up-lemma [79], we have

Pn =
1
2

+ 2W−1
W∏
j=1

(Pmj
− 0.5). (6.14)

The correctness of the estimates m̂j , j = 1, . . . ,W is assumed independent of the
probability P (

∑
jmj = 0). Recalling (6.8) and introducing the notation PM for the

probability that the true majority bits sum to zero, we have an approximation for the
total probability P , that the estimated majority bits sum to zero of

P =
1
2

+ 2(PM − 0.5)(Pn − 0.5) =
1
2

+ εH . (6.15)

Using similar arguments as in Section 3.4 (also derived in [17]) we can state an
upper bound on the number of hits H we need in phase 1 to distinguish the SG from
a truly random sequence as

H ≤ 1
ε2
H

. (6.16)

A lower bound on the expected number of hits

In phase 1 of the attack, we search for positions in the z-stream where we findW blocks
Bj , j = 1, . . . ,W of length BLj , j = 1, . . . ,W , such that we simultaneously have
|Imb(Bj)| > T . If we again make the simplifying assumption that the imbalance (or
Hamming weight) of the blocks are independent, we can derive a lower bound on the
expected number of hits in phase 1, given a received sequence of length N from the
generator.
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6.3 Simulation results

The probability PBj
that we have |Imb(Bj)| > T for a block of length BLj

where we assume the keystream bits from the generator to be independent and ran-
dom, is given by

PBj
=

BLj∑
h=1+

T+BLj
2

(
BLj
h

)(
1
2

)BLj

+

−T+BLj
2 −1∑
h=0

(
BLj
h

)(
1
2

)BLj

. (6.17)

The approximated joint probability of finding W blocks is given by

PH =
W∏
j=1

PBj
(6.18)

and thus we would expect
H ≥ PHN. (6.19)

Parameter trade-offs

If we choose a large value for the parameter E we will have larger blocks Bj and the
probability for the bit anj

to be mapped inside Bj increases. On the other hand the
a-blocks will also be larger, resulting in a smaller probability for the true majority bits
to sum to zero. If we only choose the lengths BLj to be larger, then the distribu-
tion for the smaller block that is scanned in (6.5) tends to be closer to the binomial
distribution, which gives us less non-randomness from which to extract information.

If we choose a high imbalance threshold T , the distributions of Vj will be more
skewed and we will need a fewer number of hits to distinguish the sequence. But on
the other hand, the probability for getting a hit in phase 1 decreases, thus requiring a
longer received sequence.

6.3 Simulation results

In this section we present some simulation results and do a comparison with the de-
rived theoretical approximation. In the attack we have used the hard decision rule and
a decision threshold Γ = 0.5+

√
hits/(2 ·hits), which corresponds to approximately

one standard deviation from the expected value if the sequence were truly random. We
start by attacking a weight 4 LFSR given by the linear recurrence equation

an + an+302 + an+703 + an+1000 = 0. (6.20)

Using a threshold T = 3 and block size parameterE = 14, the theoretical calculations
in (6.15) and (6.17) give PH = 0.02648 and εH = 0.00092. Thus we would need
about H = 1/ε2

H ≈ 220 hits in phase 1 and N = H/PH ≈ 225 received output bits.
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6. Cryptanalysis of the shrinking generator

Running the attack with these configurations 50 times (with random initial state), we
can distinguish the SG in all 50 cases.

As the degree of the feedback polynomial increases, the attack naturally needs a
larger received sequence, and it becomes impractical to simulate the attack. Also, the
approximations made in the analysis tend to overestimate the required N , as exper-
iments with shorter sequences have shown. We have summarised some results from
attacking weight 4 feedback polynomials in Table 6.2. We also give two examples of
attacking an SG with weight 3 and weight 5 feedback polynomials in Table 6.3.

Tap positions Theoretical parameters N used Successes out

(excluding 0) PH εH H N in attack of 50 runs

302, 733, 1000 0.02648 2−10.1 220.2 225.4 223 43

224 46

225 50

812, 1433, 2500 0.03586 2−11.5 223.0 227.8 225 39

226 46

227 50

2333, 5847, 0.05542 2−13.5 227.0 231.2 228 42

8000 229 48

230 50

3097, 6711, 0.05989 2−13.9 227.7 231.8 228 45

10000 229 45

230 46

Table 6.2: Theoretical and simulation results from attacking the SG with
various weight 4 feedback polynomials

The computational complexity of the attack is quite modest. If we use pre-
computed tables for (6.6), we see that we need to scan the input sequence once and
whenever we have a hit we calculate (6.5). The size of the interval Ij is proportional
to

√
nj and hence we have the computational complexity O(N

√
nW ), where N is

the number of received output bits and nW is the last tap position or the degree of the
feedback polynomial.

106



6.4 Related work

Tap positions Theoretical parameters N used Successes out

(excluding 0) PH εH H N in attack of 50 runs

17983, 40000 0.1414 2−10.2 220.3 223.1 221 36

222 46

223 50

73, 131, 0.0068 2−11.56 223.1 230.3 229 48

219, 300 230 50

Table 6.3: Theoretical and simulation results from attacking the SG with
weight 3 and weight 5 feedback polynomials.

6.4 Related work

Several approaches for attacking the SG have been proposed. In the original paper
on the SG [18], Coppersmith, Krawczyk and Mansour considered two basic divide-
and-conquer attacks. The first attack assumes known feedback polynomials for both
LFSRs, A and S, of degree lA and lS respectively. By guessing the initial state of
S, the selection sequence from S is recovered and consequently a (non-consecutive)
sequence of a-stream bits can be obtained from the keystream output. The resulting
system of linear equations for the initial state of A can then be solved in polynomial
time. In the second attack, the feedback polynomials are assumed unknown and the
attack starts by guessing the feedback polynomial and initial state of S. From the
known keystream of N bits, it is then possible to obtain the so-called product sequence
pn = snan, 0 ≤ n ≤ N , which is shown in [104] to have a linear complexity of
at most lAlS . By observing N = 2lAlS bits, the complete product sequence can be
constructed. This information is sufficient to reconstruct the a-stream, an, and hence
both the initial state of A and the feedback polynomial for A. The complexity of this
second attack is exponential in lS but polynomial in lA.

In 1994, Golić and O’Connor presented a probabilistic correlation attack on gen-
eral clock-controlled generators [53]. Their approach is to consider the joint proba-
bility of an a-stream sequence an, n ≥ 0 and the shrunken sequence zt t ≥ 0. The
joint probability is considered for every initial state of A that could possibly generate
the shrunken sequence zt. For a certain number of observed bits, which is shown to
be dependent on the channel capacity for a deletion channel, the correct initial state
of A will lead to the highest joint probability and hence a recovery is possible. The
approach in [53] was later experimentally analysed, using the SG, by Simpson, Golić
and Dawson in [114]. Their analysis assumes a known feedback polynomial for A
and it is stated that the attack in [53] needs approximately 20 · lA bits of observed
keystream and a computation complexity of 2lA l2A to recover the initial state of A.
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In 1995, Golić presented another technique [43]. In this paper, several attacks
on a general keystream generator based on irregularly clocked shift registers are dis-
cussed. The one most relevant to this chapter, is the distinguisher based on a statistical
weakness in the output sequence. The attack is based on the probability that the prop-
erly decimated linear recurrence is fulfilled in the decimated sequence. The paper also
discusses a method of reconstructing an unknown feedback polynomial using this sta-
tistical weakness. The ideas from this paper were applied to the shrinking generator
in [46, 50], both authored by Golić. The distinguishing attack presented there com-
pares nicely to the one discussed in this chapter. From Table 6.2 we recall that our
distinguisher needs approximately 232 bits to distinguish the SG with a weight 4 poly-
nomial of degree 10, 000 and from Table 6.3 we recall that we need approximately
223 bits to distinguish the SG with a weight 3 polynomial of degree 40, 000. The dis-
tinguisher in [46] needs approximately 248 and 239 output bits respectively for these
cases.

In 1998, Johansson [63] presented a reduced complexity correlation attack based
on a suboptimal decoding procedure for the deletion channel. The attack searches
for specific substrings in the output sequence such that the posteriori probabilities for
the bits in the a-stream are highly biased. These probabilities are then used in the
decoding algorithm to recover the initial state of LFSR A. However, the attack is still
exponential in the length of LFSR A.

Very recently, in an unpublished paper by Golić and Menicocci [52], another dis-
tinguishing attack on the SG was presented. Similarly to the ideas presented in this
chapter, their attack calculates the probability of the bits in the a-stream conditioned
on the observed bits in the z-stream. Then, a hard decision is made on the bits in
the a-stream and the bit values are used to check the validness of the (unshrunken)
linear recurrence equation. A chi-square statistical test is performed on the number of
valid/invalid instances and the distinguisher is successful if the statistics deviate suffi-
ciently from the random case. This approach gives results comparable to ours. From
experiments, it can be shown that our approach, using the majority bit, is superior
if the weight is 3 or 4, and comparable to their attack if the weight of the feedback
polynomial is 5. As stated previously, our theoretical analysis tends to overestimate
the required length of the keystream while their theoretical analysis seems to be more
accurate with respect to experimental data.

6.5 Summary

A practical distinguishing attack on the shrinking generator with a low-weight feed-
back polynomial for the generating LFSR has been proposed. The attack is based on
the new observation that the majority bits of blocks in the LFSR stream fulfil the lin-
ear recursion with a probability larger than 1/2 and a powerful method of estimating
these bits, based on the received keystream, has been presented and analysed.
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Approximate expressions for the required number of observed keystream symbols
are given, based on an upper bound on the required number of hits obtained from
phase 1 of the attack. Also, a lower bound on the expected number of hits, based on
input parameters to the attack, is derived. Simulations of the attack are given to verify
the derived bounds.

It can also be noted that the first segment need not be taken as the reference seg-
ment. A tap in the middle of the feedback polynomial could be used instead. The
probabilities are then calculated both forward and backward in the a-stream and the
probabilities of the estimates being correct would thus increase.

The proposed attack can also be used to predict the distribution of bits in the gen-
erated sequence. Assume it is known that the generating source is the SG. Firstly, the
bit probabilities of the W − 1 first segments are calculated. Then using the theoret-
ical calculations of the probability that the majority bits sum to zero, the unknown
distribution of the last segment can be derived.

6.6 Technical details of the analysis

In this section some of the more technical details of the analysis of the attack are given.

Some details of phase 2

The interval size in (6.5) is a tunable parameter of the attack and we have chosen it to
be the integers in the range [−√

nj/3, . . . ,
√
nj/3]. Next we consider the probability

that the z-block centred at zt1+nj/2+k, k ∈ Ij , is the best block to choose. An exact
mathematical expression for this notion is hard to find because of the deletion process.
To simplify the calculations we assume that this probability is given by the binomial
distribution, Bin[nj , 0.5](nj/2 + k). This assumption does not take into account
the fact that the bit an1+nj

might not be visible (printed) in the z-stream at all, since
it might be deleted. However, we can disregard whether the bit is printed or not
since we are only trying to estimate the surroundings of an1+nj

. Thus, the assumed
distribution is adequate, and we write

P (k is the best position for estimating Sj) = (6.21)

P (k is best) =

Bin[nj , 0.5](
nj
2

+ k) =
(

nj
nj

2 + k

)(
1
2

)nj

(6.22)

We note that the interval Ij is chosen such that
∑
k∈Ij

P (k is best) ≈ 0.5.
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Probability that the sum of the majority bits equals zero

We will assume that the bits in the first W − 1 vectors in the LFSR case can be
approximated by the truly random case. Given this assumption, the probability Vj is
given by the binomial distribution

Vj(α) = Bin[La, 0.5](α), i = 1, . . . ,W − 1. (6.23)

When xoring vectors together, we will denote the distribution of vectors (for the sum)
by Qj(α). We will add a superscript to this Q later, but for now we say that Q1(α) =
V1(α), α = 0 . . . La, since we have not added any vectors but the first. Q2(α) will
be the probability of a vector of weight α when we have xored two V distributions.
We also introduce an operator to determine the majority bit. Let Maj(α) denote the
majority bit of a vector of length La and weight α. We have

Maj(α) =
{

1 if α > (La − 1)/2,
0 otherwise.

The next lemma states the possible values of the weight and the number of different
values obtained, when xoring two vectors together.

Lemma 6.2: Let A be a fixed vector of length La and weight α. If we xor all possible
vectors (one at a time) of weight β with A, then the possible weights of the xor sum
are γ = α − β + 2κ where max(0, β − α) ≤ κ ≤ min(La − α, β). The number
of resulting vectors with weight γ is given by(

α

β − κ

)(
La − α

κ

)
. (6.24)

�

Proof. Denote by B the set of all vectors with weight equal to β. Assume κ of the
ones in B coincide with the zeros of A. This implies that β − κ of the ones in B
coincide with the ones of A. The number of such vectors in B is(

α

β − κ

)(
La − α

κ

)
.

For the choice of κ we must have 0 ≤ β − κ ≤ α or equivalently α − β ≤ κ ≤ β,
since at least zero and at most α of the ones can coincide. Similarly, we must have
0 ≤ κ ≤ La − α, since the number of zeros in A is La − α. Combining these
restrictions we get max(0, α− β) ≤ κ ≤ min(La − α, β). The resulting weight of
the xor sum is γ = α− (β − κ) + κ = α− β + 2κ, which proves the lemma. �

Thus, if we randomly pick one vector B of weight β, from a uniform distribution
(over the set of vectors with weight β) and xor with the fixed vector A, we have the
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probability

Pγ(α, β, κ) =

(
α

β − κ

)(
La − α

κ

)
(
La
β

) , (6.25)

of obtaining a resulting vector of weight γ = α − β + 2κ, where max(0, β − α) ≤
α ≤ min(La − α, β).

When xoring two vectors, we must keep track of whether the xor of the majority
bits agrees with the majority bit of the sum. For example, we can get the vector 11110
by

Vector Weight Maj. bit
11000 2 0

⊕00110 2 0
11110 4 1

or by

Vector Weight Maj. bit
11100 3 1

⊕00010 1 0
11110 4 1

We can determine this condition by checking ifMaj(α)⊕Maj(β) = Maj(γ), and
we will denote the corresponding probability mass as different variables, Q0

j(α) for
when the sum of the constituent majority bits agrees with the majority bit of the sum,
and Q1

j(α) for when it does not. One can think of the superscript as a parity bit for
making the sum of the constituent majority bits and the resulting majority bit equal
to zero.

Let M(α, β, γ) = Maj(α) ⊕ Maj(β) ⊕ Maj(γ). Recalling (6.25) and the
fact that we defined Q0

1(α) = V1(α), α = 0, . . . , La we have for the sum of j =
2, . . . ,W − 1 vectors

Q0
j(γ) =

∑
Cond(α,β,κ)

Pγ(α, β, κ)Q
M(α,β,γ)
j−1 (α)Vj(β), (6.26)

Q1
j(γ) =

∑
Cond(α,β,κ)

Pγ(α, β, κ)Q
1⊕M(α,β,γ)
j−1 (α)Vj(β), (6.27)

where Cond(α, β, κ) determines the summation conditions according to

Cond(α, β, κ) =

⎧⎨
⎩

∀α, β, κ :
α− β + 2κ = γ,
max(0, β − α) ≤ κ ≤ min(La − α, β).

(6.28)

In QW−1, we have the distribution of all but the last tap position vector. If we
know that the sequence comes from an LFSR, we know that the last vector must force
the total vector sum to the all-zero vector. Thus we find the probability that the xor of
the majority bits (mj) fulfils the recurrence equation to be

PM = P (
W∑
j=1

mj = 0) =
La∑
α=0

Q0
W−1(α). (6.29)

111



6. Cryptanalysis of the shrinking generator

These are the probabilities for the vectors that will have 0 as "majority parity bit", thus
fulfilling the recurrence equation. The derived probability PM is used in (6.15).

Approximations of V +
j and V −

j

Next, we derive the approximations of the probabilities V +
j (x) and V −

j (x), for j =
1, . . . ,W , starting with V +

j (x). Recall the definition

V +
j (x) = P (wH(Sj) = x|Imb(Bj) > T ). (6.30)

Since the analysis is independent of the actual reference position zt1 = an1 , we will
simplify the notation. The position n1 + nj , the jth tap position for the reference bit
an1 , will simply be denoted nj and the value of that bit is denoted anj

. We start by
conditioning on the assumption that anj

(or at least its near surrounding) is visible
inside the z-block Bj . If anj

falls outside Bj we do not get any information on the
weight of Sj and must assume it to be binomially distributed. We have

P (wH(Sj) = x|Imb(Bj) > T ) =
P (wH(Sj) = x|Imb(Bj) > T, anj

in Bj)P (anj
in Bj)+

(1 − P (anj
in Bj))Bin[La, 0.5](x). (6.31)

In the attack, we "slide" a block of length Lz in the z-stream, where the centre position
t1 + nj/2 + k, is within an interval Ij , cf. (6.5). Let Kk denote the block at centre
position t1 + nj/2 + k. We have noted experimentally that the distribution of the
weight of Kk is almost independent of k, except at the end points of the interval,
where it does not change to a great degree. Thus, we drop the subscript of Kk and
refer to its distribution as P (wH(K) = y). With this approximation we say that the
first probability in the right hand side of (6.31), conditioned on anj

being within Bj ,
is only dependent on the probability of the weight of K. Hence we write

P (wH(Sj) = x) =
Lz∑
y=0

P (wH(Sj) = x|wH(K) = y)P (wH(K) = y), (6.32)

where we have dropped the additional conditions Imb(Bj) > t and anj
in Bj , for

readability.
For j = 2, . . . ,W , the probability P (anj

in Bj) in (6.31) is approximated by the
probability that we have nj/2− (Bj − 1)/2 or more, but nj/2 +(Bj − 1)/2 or less,
visible symbols in the z-stream at a-stream position nj . We write

P (nj in Bj) =

nj
2 +

Bj−1

2∑
v=

nj
2 −Bj−1

2

(
nj
v

)(
1
2

)nj

, j = 2, . . . ,W. (6.33)
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For j = 1 we know (by assumption) that zt1 = an1 and we have the probability
P (an1 in B1) = 1.

Next, we consider the second probability on the right hand side of (6.32). Re-
calling the implicit condition Imb(Bj) > T , and the approximation that wH(K) is
independent of the centre position, we state this probability as: The probability that
a random substring—of length Lz , chosen at random, in a random string Bj of length
BLj—has wH(K) = y, given Imb(Bj) > T .

Let wTH be the equivalent weight of the imbalance threshold T . It can be shown
that

P (wH(K) = y|wH(Bj) > wTH) =

BLj∑
b=wT

H+1

F (y, b)

BLj∑
b=wT

H+1

(
BLj
b

) , (6.34)

where

F (y, b) =⎧⎨
⎩
(
BLj − Lz
b− y

)(
Lz
y

)
if max(0, b− (BLj − Lz)) ≤ y ≤ min(Lz, b),

0 otherwise .
(6.35)

We proceed by evaluating P (wH(Sj) = x|wH(K) = y), where we consider K
to be the "best" sub-block inBj , i.e. the sub-block with the most bits from the a-block
Sj of length La, surrounding nj . But, even if K is assumed to be the best sub-block,
not all of the bits in K need to come from Sj . Thus, we also have to calculate the
average weight of the bits not coming from Sj . Let d be the number of bits not coming
from Sj (from either end of K), and let wdH denote their weight. We need to have at
least one bit from Sj in K, since we assume K to be the best sub-block. Thus we can
write

P (wH(Sj) = x|wH(K) = y) =
E∑
d=0

P (wH(Sj) = x|d bits not from Sj , wH(K) = y)P (d bits not from Sj),

(6.36)
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where

P (wH(Sj) = x|d bits not from Sj , wH(K) = y) =
d∑

m=0

P (wH(Sj) = x|wdH = m, d bits not from Sj , wH(K) = y)P (wdH = m).

(6.37)

Now, given wdH = m we know that y − m ones in K come from Sj and since
La = 2Lz − 1 = 2E + 1 we have E + d bits from Sj not printed in K. Hence, the
probability P (wH(Sj) = x| . . .) equals the probability of finding x− (y −m) ones
in E + d samples from a random source

P (wH(Sj) = x| . . .) =

{
Bin[E + d, 0.5](x− (y −m)) if x ≥ y −m,

0 otherwise.
(6.38)

Since wH(K) = y, the probability that wdH = m is the probability that the weight of
d random bits from K equal m and is given by

P (wdH = m) = Bin[d,
y

Lz
](m). (6.39)

Finally, we need the approximation of P (d bits not from Sj). Since bits could be
dropped at either end, but not more than (Lz − 1)/2 at one end, we can write

P (d bits not from Sj) =∑
d1+d2=d

0≤d1,d2≤(Lz−1)/2

P (d1 bits dropped left)P (d2 bits dropped right), (6.40)

where we use the approximation

P (d1 bits dropped at an end) =

⎧⎪⎨
⎪⎩

Lz−1∑
v=(Lz−1)/2

Bin[E, 0.5](v) if d1 = 0,

Bin[E, 0.5](Lz−1
2 − d1) if d1 > 0.

(6.41)

The derivation of the approximation for V −
j (x) is similar, but the condition for

the imbalance is Imb(Bj) < −T , and (6.34) becomes

P (wH(K) = y|wH(Bj) < wTH) =

wT
H−1∑
b=0

F (y, b)

wT
H−1∑
b=0

(
BLj
b

) , (6.42)
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where wTH now is the equivalent Hamming weight of the imbalance −T .
The derived approximations for V +

j (x) and V −
j (x) are used in (6.13) to calculate

the theoretical estimates of the attack complexity shown in Table 6.2 and 6.3.
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7
Cryptanalysis of the

self-shrinking generator

The shrinking generator, presented in Chapter 6, was refined in 1994 by Meier and
Staffelbach [84] to an even more elegant construction; the self-shrinking genera-

tor (SSG). The two LFSRs from the shrinking generator are combined into a single
LFSR, and the bits in the produced sequence are divided into pairs. The first bit of
each pair is a selection bit that determines if the second bit, the active bit, is to be taken
as an output keystream bit or discarded. The single LFSR in the SSG acts as both the
selection source S and the generating source A in the shrinking generator. The SSG
is pictured in Figure 7.1. From the selection logic we note that, on average, 3 out of

LFSR A Selection
logic

Selection logic:

if

an Keystream zt

(a2i, a2i+1) =

⎧⎪⎪⎨
⎪⎪⎩

(1, 1) output 1,
(1, 0) output 0,
(0, 1) discard a2i+1,
(0, 0) discard a2i+1.

Figure 7.1: Model of the self-shrinking generator.
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4 bits produced by the LFSR are discarded. Similarly to the shrinking generator, the
secret key defines the initial state of the LFSR. It is also recommended in [84] that
the feedback polynomial is determined from the secret key. An interesting observation
made in [84] is that the SSG and the shrinking generator are equivalent in functional-
ity. Each implementation of the SSG can be considered a special case of the shrinking
generator and vice versa.

Very little of the previous cryptanalysis on the SSG has been concerned with the
case where the feedback polynomial is unknown. The best known approach for this
case is simply to guess the feedback polynomial and then apply one of the possible
attack methods on the SSG with known feedback polynomial. In this chapter, it will
be demonstrated that for a certain class of very weak feedback polynomials, the output
sequences from the SSG can be distinguished from random sequences very efficiently
(in polynomial time). It will be shown that for such a weak feedback polynomial,
there also exists an efficient key recovery attack. Finally, a more general class of weak
feedback polynomials is analysed and a distinguishing attack on the SSG, with a known
feedback polynomial from this class, will be presented. The results in this chapter have
previously been presented in [35].

This chapter is organised as follows. In Section 7.1 some related work is discussed.
In Section 7.2 the first class of weak polynomials is defined and both the distinguishing
attack and the initial state recovery attack are presented. Then, in Section 7.3 the more
general class of weak polynomials is given and a distinguishing attack on the SSG for
this class is presented. Some implementation aspects of the attack are discussed in
Section 7.4 together with simulation results. Finally, in Section 7.5, a summary of the
chapter is given.

7.1 Related work

Besides presenting the SSG, Meier and Staffelbach also presented a cryptanalysis of
the new generator [84]. They observed that each bitpair has a biased probability given
the keystream output. For example, the a-stream pair (a0, a1) = (1, z̃0) cannot occur
given the keystream output z0, z1, . . .. Here, z̃0 denotes the bitwise complement of
z0. Furthermore, (a0, a1) = (1, z0) occurs with probability 0.5, whereas (a0, a1) =
(0, 0) and (a0, a1) = (0, 1) both occur with probability 0.25. Continuing this line of
argument, it is shown in [84] that the entropy of the initial state, of a length l SSG, is
0.75l. Thus, the optimal guessing strategy for the initial state is to start with the most
probable state and check if that guess was correct. If not, proceed with the second most
probable state, et cetera. This approach gives an average computational complexity of
O(20.75l).

In 1996, Mihaljevic presented a time-data trade-off attack [86]. The attack starts
by assuming that a segment of m < l/2 keystream bits has been produced by a certain
state of the LFSR. Consequently, m of the selection bits in the LFSR need to be equal
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to 1. The attacker proceeds by guessing the positions of those ones and then searching
over all m bit substrings in the keystream output, trying to find a position where
the assumption is correct. The computational complexity of the attack varies from
O(20.5l) up to O(20.75l), under less favourable circumstances. The required length N
of the observed keystream varies from 20.5l to 20.25l respectively. The choice of the
parameter m depends on the number of available keystream bits, and it is shown that
the following relation must hold in order for the attack to be successful

N > m2l/2

(
l/2
m

)−1

.

In 2001, Zenner, Krause and Lucks [122] presented an attack on the SSG based
on ideas from [18]. Their method is to guess bits, one at a time, in combination
with the observed keystream output, and build a search-tree. Whenever they reach a
condition which falsifies earlier guesses, they backtrack in the tree and make another
guess. The computational complexity of this approach is O(20.69l) and it needs a very
short length of observed keystream bits. This attack was later improved by Krause [74]
using a technique called Binary Decision Diagrams (BDD). Krause further reduced the
complexity to O(20.64l), also using a very short observed keystream sequence.

All previously known attacks assume a known feedback polynomial and the com-
putational complexity is exponential in the length l of the LFSR. We will now present
a new approach that is very efficient for a certain class of weak feedback polynomials.

7.2 A first class of weak polynomials

Before the attacks are discussed, we specify the attack model and introduce some no-
tation for the attacks. Assume an SSG with a weight W feedback polynomial. The
sequence produced by the LFSR is called the a-stream and is denoted an, n ≥ 0. The
keystream output is called the z-stream and is denoted zt, t ≥ 0. The attacks are
known plaintext attacks so the keystream output zt, 0 ≤ t ≤ N , is assumed to be
known for some N . The attack model is pictured in Figure 7.2. Every second bit pro-

LFSR A Selection
logic

Linear recurrence: an + an+n2 + . . .+ an+nW
= 0

a-stream z-stream

Figure 7.2: Model of the self-shrinking generator used in the attack.

duced by the LFSR is called a selection bit and has an even index. These bits determine
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7. Cryptanalysis of the self-shrinking generator

if the odd indexed bits, the active bits, are to be discarded or used as keystream bits,
according to the previously described self-shrinking mechanism. The selection bits are
assumed to be independent and to have a uniform probability distribution.

The first goal is to derive a distinguishing attack on the SSG with a weight 3
feedback polynomial of the form 1 + xl−1 + xl, with odd l. This means that we have
a linear recurrence equation of the form

an−1 + an = an+l−1, n ≥ 1. (7.1)

If l is odd, then whenever an is an active bit, so is an+l−1. Assume that an, for
some index n, is an active bit and is mapped to the output zt for some t, denoted by
an → zt. Then, an−1 = 1 and we have

1 + zt = an+l−1, (7.2)

where zt is a known observed bit from the z-stream. If an+l−1 appears in the z-stream
(i.e. an+l−2 = 1), it must appear as one of the symbols zt+1, . . . , zt+(l−1)/2 with a
probability given by the binomial distribution of the (l − 3)/2 selection bits in the
interval (an+l−2 is assumed to be 1 and thus excluded). The most probable position,
t+ k (in the z-stream), for an+l−1 is k = (l− 3)/4� + 1. We write this probability
as

P (an+l−1 → zt+k) = P (an+l−2 = 1) · P (an+l−1 → zt+k|an+l−2 = 1)

=
1
2
·
(

(l − 3)/2
k − 1

)
2−(l−3)/2. (7.3)

If we guess the position k correctly, we will have zt + zt+k = 1 with probability 1.
If we guess incorrectly, the relation will hold with probability 1/2. Thus, we have
identified an expected correlation for this SSG as

P (zt + zt+k = 1) = P (an+l−1 → zt+k) · 1 + (1 − P (an+l−1 → zt+k)) · 1
2

=
1
2

+
1
2
P (an+l−1 → zt+k) =

1
2

+ ε. (7.4)

Recalling Example 3.2 in Section 3.2, we know that we need about 1/ε2 samples to
distinguish the correlation in (7.4).

Let us give a brief example to determine the magnitudes of the expected correla-
tions.

Example 7.1: Assume a feedback polynomial given by 1+x62+x63. Therefore l = 63
and k = (63 − 3)/4 + 1 = 16. The probability in (7.3) is calculated to be

P (an+62 → zt+16) =
1
2
·
(

30
15

)
2−30 = 0.0722,
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and the correlation in (7.4) is calculated to be

P (zt + zt+16 = 1) =
1
2

+
1
2

0.0722 =
1
2

+ 0.536.

Thus, we need about 1/(0.036)2 ≈ 210 bits of observed keystream to distinguish
this particular SSG. Let us compare this result with known attacks. Even though
the feedback polynomial is weak, the best key recovery attacks proposed in previous
literature are still of order 20.64l which in this case is about 240. �

In Figure 7.3 the correlation probability (7.4) is plotted as a function of the length
of the LFSR, together with 1/ε2 for the corresponding correlation. Note that the
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Figure 7.3: Left figure: Correlation probability, 1/2 + ε, given by (7.4) with
k = (l − 3)/2 + 1. Right figure: The required number of
samples to distinguish the distribution, 1/ε2.

required length of the observed keystream sequence grows linearly with the length
of the LFSR, making it much more efficient than previously known attacks, where
the growth is exponential. However, the method only works for this class of weak
polynomials of weight 3, with two taps sitting together.

An initial state recovery attack

To avoid an abundance of notation, we will choose a specific feedback polynomial as
we now turn to focus on an initial state recovery attack. Therefore, assume a feedback
polynomial g(x) = 1 + x126 + x127, corresponding to the relation

an + an+1 = an+127. (7.5)

We start by squaring the feedback polynomial, in order to obtain some additional
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7. Cryptanalysis of the self-shrinking generator

relations, for example, g(x)2 and g(x)4 give

an + an+2 = an+254, and (7.6)

an + an+4 = an+508, (7.7)

respectively. In the next step we construct the set of possible values for the first 20
values of the a-stream. To simplify the analysis, we accept an error probability in our
attack and assume that the first 20 values of an produce at least 5 output bits (i.e. at
least five of the ten even selection bits in an are ones). Introduce a set L, containing
all values of (a0, a1, . . . , a19) that are possible given the beginning of the z-stream
z0, z1, . . ..

Each element in L will give a corresponding sequence for the a-stream (a127, a128,
. . . , a145) of length 19, through the recurrence relation (7.5). This will in turn give rise
to a shrunken sequence that must appear somewhere in the z-stream. As the distance
in (7.5) is 127, we can expect the position of this shrunken sequence to be about 31
steps ahead. If we do not find the shrunken sequence in the neighbourhood of position
31, we remove the corresponding value from L, thereby reducing the size of L. The
same procedure is done for relations (7.6) and (7.7), reducing the size of the set L even
further.

Next, we add all possible values (a20, a21) to the remaining elements in L and
hence the size of L grows. Again, we test the z-stream for the resulting shrunken
sequence according to (7.5), (7.6) and (7.7), and remove those values in L that do not
support our observed keystream. This reduces the size of L again, et cetera.

The case of unknown feedback polynomial

The previously presented distinguisher and initial state recovery attack only work for
the specified weak polynomial of weight 3, with two taps sitting together. This is
of course a limitation, but the approach could also be interesting in a more general
setting.

The SSG is proposed to be used with a secret feedback polynomial, i.e. the secret
key determines which primitive polynomial is to be used, as well as the initial state of
the LFSR. As mentioned before, the previously known attacks either assume a known
feedback polynomial or determine it by guessing. It is a well-known fact that there exist
roughly 2l/l primitive polynomials of length l. So, the computational complexity of
an attack assuming a known feedback polynomial thus increases with a multiplicative
factor of approximately 2l, resulting in an (asymptotic) complexity of O(21.64l) for
the best general attack.

For our attack, we proceed as follows.

(i) Find a weak feedback polynomial of length l, or weak multiples of several of the
primitive feedback polynomials.
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(ii) Examine 2l/l encryptions with different keys and apply the distinguishing at-
tack.

(iii) Apply the initial state recovery attack when a weak polynomial (or multiple) has
been found.

The proposed attack scheme uses O(l · 2l) known plaintext bits encrypted under
different keys. Its computational complexity is onlyO(l·2l) and hence, the complexity
of the best known attack on this version of the SSG is decreased from O(21.64l) to
O(l·2l).

7.3 A general class of weak polynomials

In this section, a more general class of weak feedback polynomials is examined and a
distinguishing attack on the SSG using such a polynomial is presented. To make the
notation more readable, we will describe the linear recurrence from the LFSR by its
characteristic polynomial rather than the feedback polynomial. Recall from Section 2.2
that the characteristic polynomial is the reciprocal of the feedback polynomial.

We start by assuming an SSG with a characteristic polynomial (or a multiple of
the characteristic polynomial) of the form

g(x) = g1(x) + xMg2(x), where

g1(x) = c0 + c1x
1 + c2x

2 + . . .+ ckx
k,

g2(x) = d0 + d1x
1 + d2x

2 + . . .+ dkx
k,

for binary constants ci, di, i = 0, . . . , k. The polynomials g1(x) and g2(x) have
degree ≤ k, for some small fixed integer k. This corresponds to a linear recurrence
relation of the form

k∑
i=0

cian+i =
k∑
i=0

dian+M+i. (7.8)

We now introduce blocks (or vectors) of a certain size Ba > k, containing consec-
utive symbols from the a-stream. Let

(an, an+1, . . . , an+(Ba−1)), (7.9)

denote such a block in the a-stream. By calculating the left hand side of (7.8), starting
at different positions in (7.9), we construct the following block

h1 = (
k∑
i=0

cian+i,
k∑
i=0

cian+1+i, . . . ,
k∑
i=0

cian+(Bh−1)+i), (7.10)
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of length Bh = Ba − k. Similarly, for the right hand side of (7.8) but now starting at
the a-stream position an+M , we construct the following block

h2 = (
k∑
i=0

cian+M+i,

k∑
i=0

cian+M+1+i, . . . ,

k∑
i=0

cian+M+(Bh−1)+i), (7.11)

of the same length Bh. Clearly, due to (7.8), we have

h1 + h2 = 0,

where 0 is the zero block of length Bh.
Now, h1 and h2 are unknown quantities, but through the keystream output se-

quence, an estimate can be calculated. For a fixed t, we know that an+1 → zt for
some even n, implying that the selection bit an = 1. We conclude that the sequence
zt, zt+1, . . . provides some information about (an, an+1, . . . , an+(Bh−1)) and thus
about h1. This information is collected by calculating the probability

P (h1|zt, zt+1, . . .). (7.12)

Similarly, the keystream output symbols around the (t + M/4)th position will pro-
vide some information about (an+M , an+M+1, . . . , an+M+(Bh−1)) and thus about
h2. But here we do not know exactly where an+M appears in the z-stream or if it
appears at all. Therefore, we need to consider an interval near zt+M/4, and collect the
information about h2 as

P (h2| . . . , zt+M/4, zt+M/4+1, . . .). (7.13)

By combining these two probabilities we can build a classical distinguisher by calcu-
lating the probability

γt = P (h1 + h2 = 0|zt, zt+1, . . . ; . . . , zt+M/4, zt+M/4+1, . . .). (7.14)

For zt, t ≥ 0, being a truly random sequence, the expected value of γt is 2−Bh ,
whereas for a keystream output sequence from the SSG, the expected value will be
larger. Again we use a log-likelihood test, and for suitable N0 calculate

Λ =
N0−1∑
t=0

log2

( γt
2−Bh

)
,

{
if Λ ≥ Λ0, decide for self-shrinking,

if Λ < Λ0, decide for random sequence,
(7.15)

where Λ0 is a threshold value. Given an observed keystream output of N bits, the
value N0 depends on M and on how many z-stream bits we choose to condition on in
(7.13).
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Restrictions on the class

Not all values of M and degrees of g1(x) and g2(x) are suitable for the proposed dis-
tinguishing attack. As mentioned previously, k is the maximum value for the degrees
of g1(x) and g2(x). Assume for simplicity that g1(x) has degree k1 = k and g2(x)
has degree k2 ≤ k. When calculating the first position in the vector h1, we use the
a-stream block

(an, an+1, . . . , an+k1), (7.16)

where an is a selection bit and an+1 → zt for some observed zt (compare with (7.10)).
For the next position in h1, we use the a-stream block

(an+1, an+2, . . . , an+k1+1),

et cetera.
Now, assume that k1 is even. Since an is a selection bit, so is an+k1 . The dis-

tribution of each active bit in (7.16) is dependent on the bits previously assumed,
conditioned on the output. However, if an+k1 is a selection bit, the distribution of
that bit will not be conditioned on anything, since we do not estimate it together with
its active bit, and the distribution of an+k1 will be uniform.

Since an+k1 is used in the summation for the first position, its uniform distribu-
tion will effectively mask the biased distribution of the other bits used in the summa-
tion. As a result the distribution of the first bit position of h1 will be uniform.

For the second position in h1, the situation is reversed. Now, both an+1 and
an+k1+1 are active bits and the summation of the bits in that a-stream block will yield
a biased distribution for the sum. Continuing this line of reasoning, we see that every
second bit position in h1 will have a uniform distribution.

Next, we note that if M is even, the first bit in the a-stream block used for calcu-
lating h2 will also be a selection bit. This means that if k2 is odd, the last bit an+M+k2

will be an active bit, and the resulting distribution for the first position of h2 will be
biased. The second position will be uniform, et cetera. However, when adding the
vectors as done in (7.14), the biased first position of h2 will be cancelled out by the
uniformly distributed first position of h1. For the second position, the biased bit from
h1 will be cancelled out by the uniformly distributed second position of h2, and so
on. To prevent this, we state the following rule as to which values of M and which
degrees of g1(x) and g2(x) are allowable:

If M is even/odd, then the difference in degree of g1(x) and g2(x) must
be even/odd respectively.

Hence, the uniformly distributed bits from h1 and h2 will overlap and the resulting
vector will be biased.
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7.4 Implementation aspects and simulation results

Firstly, we consider the calculations of the distributions in (7.12) and (7.13).
For the distribution of h1, we assume a block in the z-stream of lengthBz , starting

at zt for some t ≥ 0. Recall the additional assumptions that an = 1 and an+1 → zt.
The first aim is to calculate the distribution

P
(
(an, an+1, . . . , an+(Bh−1))|zt, zt+1, . . . , zt+(Bz−1)

)
. (7.17)

The distribution P (h1|zt, . . . , zt+(Bz−1)) is then straightforward to derive and can
be pre-computed and stored in a look-up table. For the calculation of the probability

1 1 1

1/2

1/2

1/4

1/4

1/2

1

0

1

0

1

S A S A

zt

zt+1

an an+1 an+2 an+3

Figure 7.4: The beginning of the trellis used to calculate the conditioned
probability (7.17). "S" denotes a selection bit and "A" denotes
an active bit. The edges are labelled with the possible bit values
of the a-bit and the nodes are labelled with the probability of
that pattern.

in (7.17) we can use a trellis, which is a branching tree with probabilities in the nodes,
see Figure 7.4. Each possible pattern for the a-block can be read off the tree from left
to right. The end nodes give the probability of that particular pattern.

The distribution of h2 is somewhat more complicated as we do not know exactly
where those a-bits are printed in the z-stream. The aim is again to derive the proba-
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bility

P
(
(an+M , an+M+1, . . . , an+M+(Bh−1))|(. . . , zt+M/4, zt+M/4+1, . . .)

)
. (7.18)

Without going too deep into technicalities, let zτ be the position in the z-stream where
the first active bit from the considered a-block is visible. IfM is odd, an+M is an active
bit and if M is even, an+M is a selection bit. Similarly to Figure 7.4, we can build a
trellis conditioned on the assumption that zτ is the first visible bit, and then weight the
derived node probability with the probability that zτ is the first bit. The probability
that zτ is the first visible bit from the a-block is given by the binomial distribution.
We have in our implementation chosen an interval for zτ proportional to

√
M . From

the distribution in (7.18), the distribution of h2 can easily be derived.
With pre-computed tables of the conditioned probabilities in (7.12) and (7.13),

the time complexity of the attack is rather modest. We need to scan the observed
keystream once, making it linear in the parameterN0. For each position zt, we scan the
keystream near zt+M/4, over an interval proportional to

√
M , in order to derive the

weighted distribution of the second a-block. Finally, we combine the two distributions
h1 and h2, which takes a time proportional to Bh.

Simulation results

Some simulation results for different configurations are shown in Figures 7.5, 7.6, 7.7
and 7.8. For these figures, the x-axis shows the log2 of N0, the number of trials for
the log-likelihood test (7.15) and the y-axis shows the log-likelihood ratio. Typically, a
log-likelihood ratio larger than 10 would be sufficient for a correct decision with high
probability.

The number of trials, N0, we can perform in the log-likelihood test (7.15), with
an observed keystream sequence of length N , is about N0 = N −M −√

M . Thus,
N needs to be slightly larger than indicated in the simulation figures.

The simulations were done by first choosing suitable g1(x), g2(x) and M , then
factorising g(x) = g1(x) + xMg2(x) to find a primitive characteristic polynomial
for the SSG. Of course, for an attack, we would have to start with a characteristic
polynomial and then find a multiple of the desired form. A simple procedure for
finding such a multiple could, for example, be as follows.

(i) Let f(x) denote the given feedback polynomial. Pick a suitable polynomial
g1(x) and starting value for M .

(ii) Calculate the remainder r(x) in

g1(x)xM = f(x)h(x) + r(x), (7.19)

using the Euclidean algorithm.
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7. Cryptanalysis of the self-shrinking generator

(iii) If deg(r(x)) ≤ k we have found a candidate g2(x) = r(x). Otherwise increase
M and calculate (7.19) again, et cetera.

The degree and weight of the polynomials are shown in Table 7.1, where the entries
in "Original LFSR" are for the actual characteristic polynomial of the SSG used in the
simulations.

Plotted in Original LFSR g1(x) g2(x)
Figure Degree Weight Degree Weight Degree Weight M

7.5 45 21 4 3 6 3 1000
7.6 53 29 6 5 6 5 1004
7.7 50 29 6 5 6 5 5016
7.8 42 15 8 7 8 7 1016

Table 7.1: Configuration data for the simulations.
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Figure 7.5: Log-likelihood ratio as a function of the logarithm of the number
of trials. The specific configuration used in this simulation of the
attack is given in Table 7.1.

In Figure 7.5 the polynomial g1(x) is of degree 4, weight 3 and g2(x) is of degree
6, weight 3. The distance between them is M = 1000. Three plots are drawn
for different block length Bh. Larger block length means the log-likelihood ratio
increases at a greater rate, but the attack needs more memory and is somewhat slower.
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Using Bh = 6, the attack is successful with an observed keystream sequence of length
approximately N ≈ 218.
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Figure 7.6: Log-likelihood ratio as a function of the logarithm of the number
of trials. The specific configuration used in this simulation of the
attack is given in Table 7.1.

In Figure 7.6, both the degree and the weight of g1(x) and g2(x) are greater. Note
that the scale on the y-axis has changed. With this configuration, we need N ≈ 219

observed keystream bits.
In Figure 7.7, the distance between g1(x) and g2(x) is increased to M = 5016.

This increases the interval in which an+M has a high probability to be found and
naturally the attack becomes more difficult. For a log-likelihood ratio of 10, we see
that N ≈ 221 observed keystream bits are required.

The last simulation, shown in Figure 7.8, uses once again a smaller value of M, but
the degree is 8 and the weight is 7 for both g1(x) and g2(x). Increased weight results
in less bias for h1 and h2 and thus increases the attack complexity. Here we need
N ≈ 224 to be able to reliably distinguish the output from the SSG from a random
sequence.
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Figure 7.7: Log-likelihood ratio as a function of the logarithm of the number
of trials. The specific configuration used in this simulation of the
attack is given in Table 7.1.
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Figure 7.8: Log-likelihood ratio as a function of the logarithm of the number
of trials. The specific configuration used in this simulation of the
attack is given in Table 7.1.
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7.5 Summary

In this section, an efficient distinguishing attack on the self-shrinking generator with a
known feedback polynomial was presented. The attack is applicable to feedback poly-
nomials (or multiples thereof ) of weight 3, with two taps sitting together. This class is
called the first class of weak polynomials. The computational complexity of the attack
is linear in the degree of the feedback polynomial, making it a huge improvement as
compared to existing attacks.

We also presented an initial state recovery algorithm for the SSG with a known
feedback polynomial from this first class. The distinguishing and the initial state recov-
ery attacks can also be used in conjunction with each other in the case of an unknown
feedback polynomial. Thereby, the attack can first identify the use of a key which
results in a weak polynomial from this class and subsequently recover the key. This
approach has lower computational complexity and better performance than previously
known attacks, in the case of unknown feedback polynomial.

Next, a more general class of weak polynomials was considered, and a powerful
distinguishing attack for that class was presented. The computational complexity of
this attack is still an open problem, but simulations show that the approach is efficient.

A natural extension of this attack would be to try to find an initial state recovery
algorithm for the general class of polynomials. Another interesting task would be to
investigate the performance of this attack if we not only use polynomials g(x) with two
clusters of taps at a distanceM , but also three or more clusters of taps. The polynomial
g(x) could then, for example, be of the form g(x) = g1(x)+xM1g2(x)+xM2g3(x).

Finally, we note that the ideas behind the described attack, for the general class
of polynomials, can also be used to derive a similar kind of attack on the shrinking
generator.
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8
SNOW—a new family of

stream ciphers

We will now leave the subject of cryptanalysis and turn to the perhaps more
complicated area of cryptography, the construction of cryptographic primitives.

The construction of good ciphers can be considered more difficult than attacking them
since there are many properties that need to be balanced against each other. Some of
the main considerations are typically security level, encryption speed, speed of initial-
isation, hardware print (in terms of gates), software print (in terms of memory) and
other features, for example, the use of an IV in a frame based communication.

In Chapter 2 we discussed the basics of stream ciphers constructed from LFSRs
and in this chapter, we will refine some ideas and present a new family of stream
ciphers called SNOW. Currently, there exists two versions of this cipher, SNOW 1.0
and SNOW 2.0. Both versions of the cipher are keystream generators based on an
LFSR defined over the field F232 , where the nonlinearity is provided by a Finite State
Machine (FSM).

From a cryptographical point of view, stream ciphers have not had as strong at-
tention within the scientific research community as block ciphers. Nevertheless, many
public communication products and military ditto have employed stream ciphers as
the means for privacy. In this thesis we have, for example, analysed two ciphers, A5/1
and E0, used in well-known civilian systems. Note however, that both these ciphers
were developed without the scrutiny of the research community. This is also the case
for the military applications, although this is much more understandable.

The interest in stream cipher development was recently boosted by the European
NESSIE project [92], that began in 1999. The goal for the NESSIE project was "to
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8. SNOW—a new family of stream ciphers

put forward a portfolio of strong cryptographic primitives" for governmental and indus-
trial use. The approach taken was to publish a "Call for Cryptographic Primitives",
inviting the scientific research community to participate in both the construction and
the evaluation of the new primitives. Primitives in several areas were considered, in-
cluding block ciphers, stream ciphers, public-key primitives, MACs, et cetera. There
were five new designs1 submitted to NESSIE in the stream cipher category, including
the first version of SNOW (SNOW 1.0) [29]. The NESSIE project has now ended and
none of the submitted stream ciphers were chosen to be the NESSIE recommendation.
The SOBER-t16 and SOBER-t32 ciphers were removed primarily due to the attacks
presented in Chapter 3. SNOW 1.0 was removed due to a guess-and-determine attack
and a distinguishing attack to be discussed in Section 8.2. These attacks revealed some
weaknesses in the design and a new improved version of the cipher, SNOW 2.0, was
developed. SNOW 2.0 was first presented in [33].

Remark. As we will keep the original notations [29, 33] for the description of the two
ciphers, parts of this chapter may not conform to the rest of this thesis. Furthermore,
some designations will be used in both the description of SNOW 1.0 and SNOW 2.0
and thus the meaning of those notations will change within the chapter as well. The
meaning will be made explicit whenever there is a risk of confusion.

This chapter is organised as follows. In Section 8.1, the first version SNOW 1.0
is presented. The known attacks and weaknesses of this first design are then discussed
in Section 8.2. Thereafter, in Section 8.3, SNOW 2.0 is presented in detail, and
some design differences between the two versions are highlighted in Section 8.4. In
Section 8.5 implementation aspects of SNOW 2.0 are considered and in Section 8.6
an attack on SNOW 2.0 is discussed. Finally, a summary of the chapter is given in
Section 8.7.

8.1 A description of SNOW 1.0

SNOW 1.0 is a word oriented stream cipher with a word size of 32 bits. The cipher is
described with two possible key sizes, 128 and 256 bits. As usual, the encryption starts
with a key initialisation, giving the components of the cipher their initial values, but
firstly, we will concentrate on the operational description.

The generator is depicted in Figure 8.1. It consists of a length 16 LFSR defined
over F232 , feeding a finite state machine. The FSM consists of two 32 bit registers,
called R1 and R2, as well as some operations to calculate the output and the next state
(the next value of R1 and R2).

The keystream is generated by bitwise adding (xoring) the output of the FSM with
the last entry of the LFSR. After that the whole cipher is clocked once, and the next

1Counting SOBER-t16 and SOBER-t32 as one family
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R1 R2S

<<<

s(1)s(2) ... s(16)

KeystreamFSM

α

Figure 8.1: A schematic diagram of SNOW 1.0

32 bits of the keystream are calculated by again xoring the output of the finite state
machine and the last entry of the LFSR. We clock again and continue in this fashion.

Returning to Figure 8.1, the LFSR has a primitive feedback polynomial over F232

given by
p(x) = x16 + x13 + x7 + α−1,

where F232 is generated by the irreducible polynomial

π(x) = x32 + x29 + x20 + x15 + x10 + x+ 1,

over F2, and π(α) = 0.
Furthermore, let s(1), s(2), . . . s(16) ∈ F232 be the state of the LFSR. Here

s(1) is associated with the leftmost memory element in Figure 8.1, and s(16) with
the rightmost. We consider a representation of the elements in F232 , using the base
{α31, . . . , α2, α, 1}, i.e. if y ∈ F232 then y is represented by (y31, y30, . . . , y1, y0),
where

y = y31α
31 + y30α

30 + · · · + y1α+ y0.

We consider y31, y30, . . . to be the most significant bits (MSB) and . . . , y1, y0 to be
the least significant bits (LSB).
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The output of the FSM, called FSMout, is calculated as

FSMout = (s(1) �R1) ⊕R2.

The output of the FSM is xored with s(16) to form the keystream, i.e.

running key = FSMout ⊕ s(16).

The keystream is finally xored with the plaintext, producing the ciphertext.
Inside the FSM, the new values of R1 and R2 are given according to

tempR1 = ((FSMout �R2) ≪) ⊕R1,

R2 = S(R1),
R1 = tempR1.

We recall the notation x � y, which here denotes the integer addition of x and y
mod 232 and the addition x⊕ y denotes the field addition (xor). The notation x ≪
is a cyclic shift of x 7 steps to the left.

Finally, the S-Box, denoted S(x), consists of four identical 8-to-8 bit S-Boxes and
a permutation of the resulting bits. It works as follows. The input x is split into
4 bytes, from most significant to least significant byte. Each of the bytes enters a
nonlinear mapping from 8 bits to 8 bits.

Let the input to the nonlinear mapping be w = (w7, w6, . . . , w0) and let the out-
put be r = (r7, r6, . . . , r0). Both vectors are considered as representing elements in
F28 using the polynomial base {β7, . . . , β, 1} generated by the irreducible polynomial
π(x) = x8 + x5 + x3 + x+ 1 and π(β) = 0. The nonlinear mapping is defined to
be

r = w7 + β2 + β + 1,

where the arithmetic is in F28 .
After the mapping above has been applied to each byte, the bits in the resulting

word are permuted. The permutation is described by

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
3 10 20 24 0 14 17 29 7 13 18 25 5 12 23 27

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 8 21 26 4 9 19 31 2 11 16 28 6 15 22 30

which should be interpreted as the 31st bit position is mapped to the 3rd, the 30th
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bit is mapped to the 10th, et cetera. Using a vector notation, this can be written as

y = (y31, y30, y29, . . . , y1, y0) → (y8, y0, y24, . . . , y15, y27).

The S-box is shown in Figure 8.2, where y = S(x) and γ = β2 + β + 1.

y24

x31
x30

x24

x23
x22

x16

x15
x14

x8

x7
x6

x0

y31

y30

y29

y23

y20

y16

y15

y10

y7

y3

y0

w7 + γ

w7 + γ

w7 + γ

w7 + γ

Figure 8.2: The S-Box in SNOW 1.0, y = S(x).
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Modes of operation

Two different modes of operation are specified for SNOW 1.0. These are referred to
as standard mode and IV mode, respectively.

Standard mode: In standard mode SNOW 1.0 implements a fast cryptographic
pseudo-random number generator. This means that for each seed, which in this case
is a secret key denoted by k, SNOW 1.0 outputs a pseudo-random number sequence.

IV mode: In IV mode the generator is initialized using two variables, the secret key
k and a known initialisation value (IV ). This means that for a given secret key k, the
generator now produces a set of pseudo-random number sequences, one for each IV
value. Since the produced sequences are supposed to be indistinguishable from truly
random sequences in all aspects, the IV mode of SNOW 1.0 can be said to implement
a length-increasing pseudo-random function (from the set of IV values to the set of
possible sequences). The length of the output sequences is usually larger than the IV
length.

In SNOW 1.0, the IV value is a 64 bit value, represented by the two 32 bit words
(IV2, IV1). The IV value thus ranges from 0 to 264 − 1, where IV2 is the most
significant word and IV1 is the least significant word.

The use of an IV value is optional and applications requiring an IV value typically
reinitialise the cipher frequently with a fixed key but the IV value is changed. This
could be the case if two parties agreed on a common secret key but wish to communi-
cate multiple messages, for example, in a frame based setting. Frequent reinitialisation
could also be desirable from a resynchronisation perspective in, for example, a radio
based environment.

Since the IV mode will use frequent reinitialisation, the performance of the key
initialisation will be an important performance parameter. Hence, the key initialisation
in the IV mode uses less SNOW 1.0 clockings than in the standard mode (32 versus
64).

Key initialisation

Let the secret key k be denoted by k = (k(1), k(2), k(3), k(4)) in the 128 bit case
and k = (k(1), k(2), k(3), k(4), k(5), k(6), k(7), k(8)) in the 256 bit case.

The key initialisation is done as follows. The LFSR is first initialised with the key.
In the 128 bit case, the LFSR initialisation is

s(1) = k(1) ⊕ IV1, s(2) = k(2), s(3) = k(3), s(4) = k(4) ⊕ IV2,

s(5) = k(1) ⊕ 1, s(6) = k(2) ⊕ 1, s(7) = k(3) ⊕ 1, s(8) = k(4) ⊕ 1,

and for the second half of the register,

s(9) = k(1), s(10) = k(2), s(11) = k(3), s(12) = k(4),
s(13) = k(1) ⊕ 1, s(14) = k(2) ⊕ 1, s(15) = k(3) ⊕ 1, s(16) = k(4) ⊕ 1,
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where 1 denotes the all one vector (32 bits).
In the 256 bit case, the LFSR initialisation is correspondingly,

s(1) = k(1) ⊕ IV1, s(2) = k(2), s(3) = k(3), s(4) = k(4) ⊕ IV2,

s(5) = k(5), s(6) = k(6), s(7) = k(7), s(8) = k(8),
s(9) = k(1) ⊕ 1, . . . s(16) = k(8) ⊕ 1.

In standard mode, we assume IV1 = IV2 = 0. After the LFSR has been initialised,
R1 and R2 are both set to zero.

Then the cipher is clocked exactly v times without producing any running key.
Instead, the output of the finite state machine is fed back into the feedback loop of the
LFSR, as shown in Figure 8.3. In standard mode v = 64, and in IV mode v = 32. In

Finite State Machine

α

Figure 8.3: The key initialisation of SNOW 1.0.

one clock cycle, the next value of s(1), here called newS(1), is given by

newS(1) = α(s(7) ⊕ s(13) ⊕ s(16) ⊕ FSMout).

After v clockings, the LFSR and the two registers R1, R2 have received their values
from the initialisation phase. The first 32 bits of the running key are now available as
FSMout ⊕ s(16).

The maximum allowed length of the running key (output sequence) is set to 250

words after which SNOW 1.0 must be rekeyed.
This concludes the description of SNOW 1.0. The reader is referred to [29] for a

discussion on implementation aspects and design choices of SNOW 1.0. Test vectors
for SNOW 1.0 can be found in the NESSIE project documentation [92].
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8.2 Attacks on SNOW 1.0

As previously mentioned, two attacks have been published on SNOW 1.0. In this
section we will outline the attacks and identify the weaknesses enabling them.

The first is a guess-and-determine attack by Hawkes and Rose [58]. Their attack
has a data complexity of 295 words and a time complexity of 2224 operations. If we use
SNOW 1.0 with a key size of 256 bits, this attack is faster than the generic exhaustive
key search attack. With the exception of some clever initial choices made by Hawkes
and Rose, basically two properties in SNOW 1.0 are used to reduce the complexity
of the attack below that of the exhaustive key search. Firstly, the fact that the FSM
has only one input s(1). This enables an attacker to invert the operations in the
FSM and derive more unknowns from only a few guesses. The second property is
an unfortunate choice of feedback polynomial in SNOW 1.0. Recall that the linear
recurrence equation is given by

st+16 = α(st+9 + st+3 + st). (8.1)

There is a distance of 3 words between st and st+3 and a distance of 6 = 2 ·3 between
st+3 and st+9. Thus, by squaring (8.1)

st+32 = α2(st+18 + st+6 + st) (8.2)

we see that (st+i ⊕ st+i+6) can be considered as a single input to either equation.
Hence, the attacker does not need to determine both st+i and st+i+6 explicitly, but
only the xor sum to use in (8.1) and (8.2).

A second weakness in the choice of the feedback polynomial emerges when consid-
ering bitwise linear approximations. Using the same technique as in Chapter 3, we can
compute the 232th power of the feedback polynomial p(x) = x16 +x13 +x7 +α−1 ∈
F232 [x], resulting in the polynomial

p232

(x) = x16·232

+ x13·232

+ x7·232

+ α−1·232 ∈ F232 [x]. (8.3)

Since α ∈ F232 we have α−1·232
= α−1, and a summation of p(x) + p232

(x) yields

x16·232

+ x13·232

+ x7·232

+ x16 + x13 + x7. (8.4)

Dividing (8.4) with x7 gives us a linear recurrence equation satisfying

st+16·232−7 + st+13·232−7 + st+7·232−7 + st+9 + st+6 + st = 0 (8.5)

In (8.5) we have derived a linear recurrence equation that holds for each single bit
position. Hence, any bitwise correlation found in the FSM can be turned into a
distinguishing attack.
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In 2002, Coppersmith, Halevi and Jutla [17] found such a correlation. Denote
the input word to the FSM at time t by ft and the output word from the FSM at time
t by Ft. Let x[i] denote bit number i in word x, where i = 0, . . . , 31 and i = 0 is
the LSB. The correlation found in [17] can now be stated as

P (σt = 0) ≈ 1
2

+ 2−9.3, (8.6)

where

σt = ft[15] ⊕ ft[16] ⊕ ft+1[22] ⊕ ft+1[23] ⊕ Ft[15] ⊕ Ft+1[23]. (8.7)

By combining (8.6) and (8.7) with (8.5), a distinguishing attack can be mounted on
SNOW 1.0, using similar techniques as in Chapter 3.

The resulting distinguishing attack in [17] needs approximately 295 words of out-
put to distinguish a keystream generated by SNOW 1.0 from a truly random sequence.
The computational complexity of the attack is approximately 2100.

By computer search, we have also found other smaller correlations, often involving
similar bit positions as the one found in [17]. The strong correlations seem to be
caused by an interaction between the permutation in the S-Box and the cyclic shift by
7 in the FSM, but the exact reason for the large correlations is unclear.

8.3 A description of SNOW 2.0

As we now turn to a description of SNOW 2.0, it must be emphasised that the no-
tations from the previous sections are no longer valid and will be redefined in the
following discussion. The new version is schematically a small modification of the
original construction, see Figure 8.4. The word size is unchanged (32 bits) and the
LFSR length is again 16, however, the feedback polynomial has been changed. The
FSM has two input words, taken from the LFSR, and the running key is formed as
the xor between the FSM output and the last element of the LFSR, as in SNOW 1.0.
The operation of the cipher is as follows. Firstly, a key initialisation is performed.
This operation provides the LFSR with a starting state as well as giving the internal
FSM registers R1 and R2 their initial values. Next the cipher is clocked once and the
first keystream symbol is read out2. Then the cipher is clocked again and the second
keystream symbol is read, et cetera.

Let us give a detailed description of the cipher, starting with the LFSR. The main
reason for choosing the specific feedback polynomial in SNOW 1.0, was to have a fast
realisation in software. By choosing a multiplication with the same primitive element
as the base is constructed from, we can realise the multiplication with just one left shift
and a possible xor with a known bit pattern. However, this choice opens up possible

2Observe the change from SNOW 1.0, where the first symbol was read out before the cipher was clocked.
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R2S

Keystream

R1

FSM

α−1 α

15 14 11 5 2 0

Figure 8.4: A schematic diagram of SNOW 2.0. To simplify the layout, the
LFSR elements are labelled only with the relative numbers. For
example, the element labelled 14 should thus be interpreted as
st+14.

weaknesses, as discussed in Section 8.2. In SNOW 2.0, we have two different elements
involved in the feedback loop, α and α−1, where α is now a root of a primitive poly-
nomial of degree 4 over F28 . To be more precise, the feedback polynomial of SNOW
2.0 is given by

π(x) = αx16 + x14 + α−1x5 + 1 ∈ F232 [x], (8.8)

where α is a root of

x4 + β23x3 + β245x2 + β48x+ β239 ∈ F28 [x], (8.9)

and β is a root of
x8 + x7 + x5 + x3 + 1 ∈ F2[x]. (8.10)

Let the state of the LFSR at time t ≥ 0 be denoted (st+15, st+14, . . . , st), st+i ∈
F232 , i ≥ 0. The element st is the rightmost element (or first element to exit) as
indicated in Figure 8.4, and the sequence produced by the LFSR is (s0, s1, s2, . . .).
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By time t = 0, we mean the time instance directly after the key initialisation. Then
the cipher is clocked once before producing the first keystream symbol, i.e. the first
keystream symbol, denoted z1, is produced at time t = 1. The produced keystream
sequence is denoted (z1, z2, z3, . . .).

The FSM has two registers, denoted R1 and R2, each holding 32 bits. The value
of the registers at time t ≥ 0 is denoted R1t and R2t respectively. The input to the
FSM is (st+15, st+5) and the output of the FSM, denoted Ft, is calculated as

Ft = (st+15 �R1t) ⊕R2t, t ≥ 0, (8.11)

and the keystream is given by

zt = Ft ⊕ st, t ≥ 1. (8.12)

Here we use the notation � for integer addition modulo 232 and ⊕ for bitwise addition
(xor). The registers R1 and R2 are updated with new values according to

R1t+1 = st+5 �R2t and (8.13)

R2t+1 = S(R1t) t ≥ 0. (8.14)

The S-Box

The S-Box, denoted by S(w), is a permutation on Z232 based on the round function
of Rijndael [25]. Let w = (w3, w2, w1, w0) be the input to the S-Box, where wi, i =
0...3 are the four bytes of w. Assume w3 to be the most significant byte. Let

w =

⎛
⎜⎜⎝

w0

w1

w2

w3

⎞
⎟⎟⎠ , (8.15)

be a vector representation of the input to the S-Box. Firstly, we apply the Rijndael
S-Box, denoted SR, to each byte, giving us the vector⎛

⎜⎜⎝
SR[w0]
SR[w1]
SR[w2]
SR[w3]

⎞
⎟⎟⎠ . (8.16)

In the MixColumn transformation of Rijndael’s round function, each 4 byte word is
considered a polynomial in y over F28 , defined by the irreducible polynomial x8 +
x4 + x3 + x + 1 ∈ F2 [x]. Each word can be represented by a polynomial of at most
degree 3. Next we consider the vector in (8.16) as representing a polynomial over F28

and multiply with a fixed polynomial c(y) = (x + 1)y3 + y2 + y + x ∈ F28 [y]
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modulo y4 + 1 ∈ F28 [y]. This polynomial multiplication can (as done in Rijndael) be
computed as a matrix multiplication,⎛

⎜⎜⎝
r0

r1

r2

r3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x

⎞
⎟⎟⎠

⎛
⎜⎜⎝

SR[w0]
SR[w1]
SR[w2]
SR[w3]

⎞
⎟⎟⎠ , (8.17)

where (r3, r2, r1, r0) are the output bytes from the S-Box. These bytes are concate-
nated to form the word output from the S-Box, r = S(w).

Key initialisation

SNOW 2.0 takes two parameters as input values; a secret key of either 128 or 256 bits
and a publicly known 128 bit initialisation value, IV . The IV value is considered as a
four word input IV = (IV3, IV2, IV1, IV0), where IV0 is the least significant word.
The possible range for IV is thus 0 . . . 2128 − 1. The use of an IV value is optional
and applications not requiring an IV value typically use IV = (0, 0, 0, 0).

The key initialisation is done as follows. Denote the registers in the LFSR by
(s15, s14, . . . , s0) from left to right in Figure 8.4. Thus, s15 corresponds to the element
holding st+15 during normal operation of the cipher. Let the secret key be denoted by
K = (k3, k2, k1, k0) in the 128 bit case and by K = (k7, k6, k5, k4, k3, k2, k1, k0) in
the 256 bit case, where each ki is a word and k0 is the least significant word. Firstly,
the shift register is initialised with K and IV according to

s15 = k3 ⊕ IV0, s14 = k2, s13 = k1, s12 = k0 ⊕ IV1,

s11 = k3 ⊕ 1, s10 = k2 ⊕ 1 ⊕ IV2, s9 = k1 ⊕ 1 ⊕ IV3, s8 = k0 ⊕ 1,

and for the second half of the register,

s7 = k3, s6 = k2, s5 = k1, s4 = k0,

s3 = k3 ⊕ 1, s2 = k2 ⊕ 1, s1 = k1 ⊕ 1, s0 = k0 ⊕ 1,

where 1 denotes the all one vector (32 bits).
In the 256 bit case, the LFSR initialisation is correspondingly

s15 = k7 ⊕ IV0, s14 = k6, s13 = k5, s12 = k4 ⊕ IV1,

s11 = k3, s10 = k2 ⊕ IV2, s9 = k1 ⊕ IV3, s8 = k0,

s7 = k7 ⊕ 1, s6 = k6 ⊕ 1, . . . s0 = k0 ⊕ 1.

After the LFSR has been initialised, R1 and R2 are both set to zero. Then, the
cipher is clocked 32 times without producing any output symbols. Instead, the output
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FSM

α−1 α

15 14 11 5 2 0

Figure 8.5: Cipher operation during key initialisation.

of the FSM is incorporated in the feedback loop, see Figure 8.5. Thus, during the 32
clocks in the key initialisation, the next element to be inserted into the LFSR is given
by

st+16 = α−1st+11 ⊕ st+2 ⊕ αst ⊕ Ft. (8.18)

After the 32 clockings the cipher is shifted back to normal operation (Figure 8.4) and
clocked once before the first keystream symbol is produced. The maximum number
of keystream words allowed is set to 250, then the cipher must be rekeyed. This limit
provides a bound for cryptanalysis and implies no practical limits to the operation of
the cipher. A practical application needing more than 250 words using the same key is
rather unlikely.

8.4 Design differences—SNOW 1.0 vs. SNOW 2.0

In this section we highlight the differences between SNOW 2.0 and SNOW 1.0 and
their expected security improvements. We start with the choice of feedback polyno-
mial. In SNOW 1.0 the multiplication can be implemented by a single left shift of
the word, followed by a possible xor with a known pattern of weight 6. This means
that the resulting word is, in many positions, only a shift of the original word. In
SNOW 2.0, we define F232 as an extension field over F28 and each of the two mul-
tiplications can be implemented as a byte shift together with an unconditional xor
with one of 256 possible patterns. This results in a better spreading of the bits in the
feedback loop, and improves the resistance against linearisation attacks, as discussed in
Chapter 3. The use of two constants in the feedback loop also improves the resistance
against bitwise linear approximation attacks, as discussed in Section 8.2. There is no
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known method to manipulate the feedback polynomial such that the resulting linear
recurrence holds for each bit position and has reasonably low weight. The uncondi-
tional xor also seems to improve speed, by removing the possible branch prediction
error in a pipelined processor.

The FSM in SNOW 2.0 now takes two inputs. This makes a guess-and-determine
type of attack more difficult. Given the output of the FSM, together with R1 and
R2, it is no longer possible to deduce the next FSM state directly. The update of R1
does not depend on the output of the FSM, but on a word taken from the LFSR. This
suggests that similar correlations to those found in [17] would be much weaker. A
recent attack on SNOW 2.0, presented in Section 8.6, also verifies this conclusion.

The S-Box in SNOW 2.0 is byte oriented, similarly to in SNOW 1.0, but the
final bit permutation in SNOW 1.0 does not diffuse as much as the new design. In
SNOW 1.0, each input byte to the S-Box affects only 8 bits of the output word. The
choice of the new S-Box, based on the round function of Rijndael, provides a much
stronger diffusion. Each output bit now depends on each input bit.

8.5 Implementation aspects of SNOW 2.0

The design of SNOW 2.0 was done with a fast software implementation in mind. We
have chosen a minimum number of different operations; xor, integer addition, byte
shift of a word, and table lookups, all available on modern processors. Even though
there are many possible tradeoffs in a software implementation, we will discuss some
of the design aspects which have high impact in software.

We start with the LFSR. The field F232 is defined as an extension field over F28 ,
with α ∈ F232 being the root of the degree 4 polynomial

x4 + β23x3 + β245x2 + β48x+ β239 ∈ F28 [x]. (8.19)

Hence, we have the degree reduction of α given by

α4 = β23α3 + β245α2 + β48α+ β239. (8.20)

In the feedback loop, multiplication with α and α−1 can be implemented as a simple
byte shift plus an additional xor with one of 256 possible patterns. This can be seen
from the representation of a word as a polynomial in F28 [x] using (α3, α2, α, 1) as the
base. Thus, any element w in F232 can be written as

w = c3α
3 + c2α

2 + c1α+ c0, (8.21)

where (c3, c2, c1, c0) are the bytes of w, c0 being the least significant byte. Multiplying
w with α will yield a reduction according to (8.20) as follows

αw = c3α
4 + c2α

3 + c1α
2 + c0α (8.22)

= (c3β
23 + c2)α3 + (c3β

245 + c1)α2 + (c3β
48 + c0)α+ c3β

239.

146



8.5 Implementation aspects of SNOW 2.0

Similar calculations can be done for the multiplication with α−1. Thus, to get a fast
implementation of the LFSR feedback, one can use pre-computed tables

MULα[c] = (cβ23, cβ245, cβ48, cβ239), (8.23)

MULα−1 [c] = (cβ16, cβ39, cβ6, cβ64), (8.24)

where c runs through all elements in F28 . The pseudo-code for the multiplication
would be

// Multiplication w*alpha
// ("<<" is left shift, ">>" is right shift)
result=(w<<8) xor MUL_a[w>>24];
// Multiplication w*alpha^-1
result=(w>>8) xor MUL_ainverse[w and 0xff];

The S-Box is implemented using the same techniques as done in Rijndael [25] and
SCREAM [54]. Recall the expression for the S-Box, r = S(w)⎛

⎜⎜⎝
r0

r1

r2

r3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x

⎞
⎟⎟⎠

⎛
⎜⎜⎝

SR[w0]
SR[w1]
SR[w2]
SR[w3]

⎞
⎟⎟⎠ . (8.25)

The matrix multiplication can be split up into a linear combinations of the columns⎛
⎜⎜⎝

r0

r1

r2

r3

⎞
⎟⎟⎠ = SR[w0]

⎛
⎜⎜⎝

x
1
1

x+ 1

⎞
⎟⎟⎠ + SR[w1]

⎛
⎜⎜⎝

x+ 1
x
1
1

⎞
⎟⎟⎠ +

SR[w2]

⎛
⎜⎜⎝

1
x+ 1
x
1

⎞
⎟⎟⎠ + SR[w3]

⎛
⎜⎜⎝

1
1

x+ 1
x

⎞
⎟⎟⎠ .

By using four tables of words, each of size 256, defined by

T0[a] =

⎛
⎜⎜⎝

xSR[a]
SR[a]
SR[a]

(x+ 1)SR[a]

⎞
⎟⎟⎠ , T1[a] =

⎛
⎜⎜⎝

(x+ 1)SR[a]
xSR[a]
SR[a]
SR[a]

⎞
⎟⎟⎠ ,

T2[a] =

⎛
⎜⎜⎝

SR[a]
(x+ 1)SR[a]
xSR[a]
SR[a]

⎞
⎟⎟⎠ , T3[a] =

⎛
⎜⎜⎝

SR[a]
SR[a]

(x+ 1)SR[a]
xSR[a]

⎞
⎟⎟⎠ ,
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we can easily implement the S-Box by addressing the tables with the four bytes (w3, w2,
w1, w0) of the input word w. In pseudo-code we can write

// Calculate r=S-Box(w)
r=T0[byte0(w)] xor T1[byte1(w)] xor T2[byte2(w)]

xor T3[byte3(w)];

where byte0(w) means the least significant byte of w, et cetera.
We have two different C implementations, both using tables for feedback multi-

plication and S-Box operations. The first version (version 1) implements the LFSR
with an array using the sliding window technique, see for example [57]. This version
is considered an "easy to read" standard reference version. The second version (ver-
sion 2) implements the cipher with "hard coded" variables for the LFSR. This version
produces 16 · 32 = 512 bits of keystream in each procedure call, corresponding to 16
consecutive clockings. Table 8.1 indicates the speed of the two versions. For the key
setup in SNOW 1.0, the IV mode is used as reference, since it also uses 32 clockings
in the initialisation phase. This accounts for a more reasonable comparison. The tests

SNOW 1.0 SNOW 2.0
Operation version 1 version 2 version 1 version 2

Key setup 925 - 937 -
Keystream generation 47 34 38 18

Table 8.1: Number of cycles needed for key setup and cycles per word for
keystream generation on a Pentium 4 @1.8GHz.

were run on a PC with an Intel 4 processor running at 1.8 GHz, and 512 Mb of
memory. Each program was compiled using gcc with optimisation parameter "-O3"
and inline directives in the code.

Test vectors for SNOW 2.0 can be found in [33].

8.6 Attacks on SNOW 2.0

In the design of SNOW 2.0, much care was taken to enhance the resistance to linear
masking attacks. The choice of α and α−1 as multiplication elements in the feedback
polynomial renders the method of taking the 232th power of the polynomial and deriv-
ing a bitwise relation obsolete, but remains very efficient in a software implementation.
Other elements could have been used at the expense of a slower realisation.

Watanabe et al. have recently shown that it is possible to use a mask directly on
the linear recurrence [119]. If the LFSR is considered built over the vector field F

32
2

instead of over F232 , the multiplications with α and α−1 are linear transformations and
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hence can be written as matrix multiplications. Let A and Ainv denote the matrix for
the α and α−1 multiplication respectively. In the vector field, the inner product � of
two vectors is defined (in the usual way) and for any row vector mask Γ, the following
equation holds

Γ � (st+16 ⊕Ainv � st+11 ⊕ st+2 ⊕A� st) = 0, (8.26)

where the state variables st+i, i = 0, 2, 11, 16 are considered column vectors. Due to
the linearity, (8.26) can be rewritten as

Γ � st+16 ⊕ (Γ �Ainv) � st+11 ⊕ Γ � st+2 ⊕ (Γ �A) � st = 0. (8.27)

By the same property that allows for a fast implementation of the multiplication, the
masks (Γ � A) and (Γ � Ainv) are easily calculated and will essentially be a shifted
version of Γ, with some distorted values in the highest and lowest byte respectively.

Now, if a correlation is found within the FSM for a certain mask, Γ, and the
correlation in the FSM for the other masks Γ⊕A and Γ⊕Ainv are not too small, the
exact same technique as in [17] can be used.

In the pre-proceedings version of [119], a mask Γ = 0x03018001 is given and the
corresponding correlation is stated to be 2−102.5. This result is however incorrect since
the mask value for (Γ�A) is erroneously calculated. In a private email correspondence
with the authors, this mistake was confirmed. The best (correct) mask value found
is instead given by Γ = 0x0303600c and the corresponding correlation is 2−113,
resulting in a distinguishing attack of complexity 2226. At the time of writing, it is
unclear whether the correct values will appear in the proceedings or not since the
printing of the proceedings may already have begun.

8.7 Summary

In this chapter two new stream ciphers, SNOW 1.0 and SNOW 2.0, were presented.
Both versions are very fast ciphers with a symbol size of 32, making them suitable for
a software implementation on a 32 bit processor. Both version utilises (optionally) an
IV mode for fast reinitialisation.

Firstly, SNOW 1.0 was presented, together with a detailed operational description.
The key initialisation procedure for both IV mode and standard (non-IV mode) was
given. Thereafter, some of the discovered weaknesses of SNOW 1.0 were discussed
and the two known attacks were presented.

Next, the second version of the cipher, SNOW 2.0, was presented and some of
the design differences from the first version were emphasised together with the ex-
pected security improvement. Some implementation aspects, in order to maximise the
encryption speed of SNOW 2.0, were also considered.
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Finally, an evaluation of the resistance to linear masking attacks (using results from
other authors) was given. The conclusion is that SNOW 2.0 is much more resis-
tant to this kind of attacks compared to SNOW 1.0. At present, the best attack on
SNOW 2.0 is a distinguishing attack requiring 2226 output words and roughly the
same time complexity.
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9
Concluding remarks

In this thesis, various stream ciphers built using LFSRs are considered. Several new
attacks on well-known ciphers are presented and theoretical and simulation results

concerning their performance are given. Several interesting problems remain however,
especially in the area of distinguishing attacks. Firstly, the framework for these attacks
must be clarified. In a recent paper by Rose and Hawkes [101], distinguishing attacks
on stream ciphers are discussed from the perspective that, in most cases, these attacks
do not have any security implications for the use of the cipher. In [101] it is argued
that distinguishing attacks are properly related to the amount of data available, not to
the key length. These kind of questions are very important to answer in order to gain
comparable public confidence in stream ciphers, as compared to block ciphers.

One often proposed replacement for a dedicated stream cipher is a block cipher in,
for example, output feedback mode (OFB) or counter mode (CTR). This circumvents
the problem of error propagation for block ciphers used in many other modes (e.g.
CBC mode). However, there is a trivial distinguishing attack for a block cipher in
counter mode, using 2n/2 output blocks, where n is the block size of the block cipher.
As an example, AES (128 bit block) with a 256 bit key in counter mode, has a dis-
tinguishing attack of order 264. For a stream cipher with a similar key size, this attack
would be considered devastating. To fairly compare the security of a stream cipher to
that of a block cipher in CTR mode, for example, a common framework is needed.

Also in the Strategic Roadmap for Cryptology (STORK) document "Open Problems
in Cryptology" [116], distinguishing attacks are discussed. The importance of achiev-
ing a firm theoretical understanding of how to build stream ciphers resistant to the
kind of linear masking attacks discussed in Chapter 3 and Chapter 8 is pointed out.

The conclusion of the NESSIE project was that none of the submitted stream
ciphers achieved the required security level and hence no stream cipher was selected
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as a recommendation. Both the SOBER-t family and SNOW 1.0 was removed pri-
marily due to the distinguishing attacks discussed in this thesis. I believe that future
applications need the encryption speed provided by dedicated stream ciphers and the
cryptographical research community should work towards settling the question of the
theoretical and practical implications of a distinguishing attack. I have the impression
that there is too large a gap between the theoretical discussions in the research commu-
nity and the practical needs of different applications. The former should not exclude
the latter, even within the research community.

Apart from the distinguishing attacks, the recent developments in algebraic at-
tacks are very interesting and need more attention both from an analysis and a design
perspective. The questions regarding the complexity of these attacks, as well as the
conditions for successful analysis, are something to add to the agenda for future work.

For the construction of stream ciphers, the toolbox of good, well documented
strategies is not as rich as for block ciphers. Most theoretical results are concerned
with Boolean combining functions or nonlinear filters. These results are important,
but modern stream ciphers must be built such that the encryption speed is much
faster than provided by a bitwise output of the keystream. In this area, there is much
interesting work to be done. In particular, the new construction presented in this
thesis, the SNOW family, would be a suitable cipher to investigate as a more general
construction. For example, what properties of the FSM can we quantify and what
implications do they have in cryptanalysis? This would be an interesting extension of
the design part of this thesis.
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